
1A 0 CoTR 8S-206
inni Technical Report

Oct!ober ~

A KNOW L.EDGE DICTIONARY SYSTEM
FOR SCHEDULING SUPPORT

ngt -ic Rese: rch Institute, Inc.

Peter G. Ossorlo z d Lowell S. Schnelc ar

APPROVE) FOR PUBLiC RELEASE; D/SThtBUTION UNLIMITED.

ROME f ,R DEVELOP IEN' CENTER
Air F rce Systems Command

riffiss A.ii Force Base, NY 134415700

(7> ~ :J

7v art v:' :,K iv tho RADC Public Affairs Dfiv ui QA)
,, AN cthe a. ." chi l' I.nCormation Service (NTIS). At

C it. .. :::,.. ;i, : . h> ' ., . . ic uding foreign nationus.

RW-U---20, hs been re.ie-d and is approdfor publication.

-7t

PAT"; C IV I L;'¢(7 ZhOF

/ ,/

Prcn 'ci Engineer

WALTF' J. SENUS
Techn cal Director
DirecLorate of Iatelligenc,: & Reconnaissance

FOY TIHE COMMANDER-

JAMES W. HYDE III

Directorate of Plans Prograns

A '4

if -any addres iN changed or if you wish to be removed fron the R DC
mai ing list, if the-addrensee is no longer employed by ycur org. nizati,
p me notify JC (IRL .) Grilfiss !FB NY 13441-5700. This will asist u
in ointai ning a currer, mailiug 1Wis:.

1) at rpturn coies of this report unless contractual obligations o' notices
ar :a pv f ic d; int i rt %_t t be returned.

UNC LASSIFIED 06MAP lqq
SECURITY CLASSIFICATION OF THIS PAGE ,

m Form Approved

REPORT DOCUMENTATION PAGE A o 070ro0e8

Ia. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED N/A

2*. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
N/A Approved for public release;

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE distribution unlimited.
N/A

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

N/A RADC-TR-88-206

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATIONLinguistic Research (ff appikabie)
Institute, Inc. Rome Air Development Center (IRDW)

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

5600 Arapahoe Ave, Slilte 206 Griffiss AFB NY 13441-5700
Boulder CO 80303

&a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBERORGANIZATION (if appika ble)

Rome Air Development Center IRDW F30602-87-C-0067

SC. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT

Griffiss AFB NY 13441-5700 ELEMENT NO. NO. NO ACCESSION NO.
65502F 3005 RA 80

11. TITLE (Include Security Oassification)

A KNOWLEDGE DICTIONARY SYSTEM FOR SCHEDULING SUPPORT

12. PERSONAL AUTHOR(S)
Peter G. Ossorio and Lowell S. Schneider

13&. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year,Month, Day) 15. PAGE COUNT
Final FROM Jun 87 TO Feb 88 October 1988 290

16. SUPPLEMENTARY NOTATION

N/A

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverie if necessary and idenby block number)
FIELD GROUP SuB-GROUP pert Systems, Artificial Intelligence,'M%. Database
12 04 Scheduling, Project Management, Knowledge Base
15 01 1

,19. ABSTRACT (Continue on rever if necessary and identify by block number)
-All social systems must deal with the problem of integrating what's actually happening with
what they believe should be happening. A standard system "for expressing general common-
sense knowledge for inclusion in a general database... [McCarthy]" is needed for the effec-
tive application of expert systems to this task. This project investigated whether a
"Knowledge Dictionary System" (KDS) based on State of Affairs (SA) [Ossoriol can achieve this
result. The investigation was performed with respect to the reference problem of managing
the knowledge necessary to perform and analyze complex scheduling. The conclusion reached
was that a EDS knowledge base could be implemented as a set of database relations that cap-
ture the part-whole characteristics of schedules; and that a small set of second order
relational operators, principally closure, could be combined to achieve a complete part-whole
inference logic for supporting fragmentary scheduling at any level and complex dependencies
within and across levels including "what if" analyses. , ,.(

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 2 br&eE&If WITY CLASSIFICATION
QUNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 1 DTIC USERS

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b, TELE PHONE (include Area Code) i 22c. OFFICE SYMBOL
PATRICIA M. LANGENDORF (315) 330-3126 RADC (IRDW)

D Form 1473. JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE
-- UNCLASSIFIED

PROJECT SUMMARY

All social systems, from the Government to small business

enterprises must deal with the problem of integrating what's

actually happening with what they believe should be happen-

ing. A standard system "for expressing general commonsense know-

ledge for inclusion in a general database.. .McCarthyJ" is needed

for the effective application of expert systems to this task.

A Phase I SBIR indicates that a "Knowledge Dictionary System"

(KDS) based on State of Affairs (SA) [Ossorio3 can achieve this

result. The objective of Phase II is a fully functional prototype

KOS applied to the problem of managing the knowledge necessary

to perform and analyze complex scheduling. The KOS consists of

SA descriptions expressed as a relational database schema and

operators expressed as extensions of relational algebra. The

schema is a collection of Basic Process Units (BPU) and Basic

Achievement Units (BAU) which capture the part-whole character-

istics of schedules. The operators achieve a complete part-whole

inference logic. The KOS will support (a) fragmentary scheduling

at various levels simultaneously but within a single conceptual

framework of contingencies; (b) representing these contingencies

within, between and across levels; and (c) propagating the

effects of favorable and unfavorable deviations throughout the

schedule, including hypothetical "what if" deviations. A KDS for

formulating, analyzing, monitoring and revising schedules is

immediately appic-abl to bovernmenL and commercial organizations

that engage in Government contracting where complex part-whole

relationships and cross-project dependencies are involved.

TABLE OF CONTENTS

1. Executive Summary. 7

2. Definitions 11

3. Introduction .. . "

4. KDS for Scheduling Support

4.1. Concepts and Facilities

4.1.1. Knowledge Structure..3

4.1.2. Part-Whole Inference Engine. 4(]

4.1.2.1. Master Plan Level40

4.1.2.2. Reporting Level 41

4.1.2.3. Logistical Level. 42

4.2. Design Requirements 43

4.2.1. Knowledge Base Development 43

4.2.1.1. Part-Whole Relation 44

4.2.1.2. Element-Individual Relation. . 47

4.. 1.3. Co-occurrence Relation 50

4.2.1.4. Temporal Constraint Relation. . 51

4.2.1.5. Assignment Relation 56

4.2.1.6. Connectivity Relation 5e

4.2.1.7. Summary of the Normalizption. . 59

4. .2. "Inference" Engine.

2.

4.2.2.. Basic Fart-Whole Inference. . . 60

4.2.2.2. Resource Competitio, . 61

4.2.2.. Temporal Conflicts 62

4.2.2.4. Choice Principles 67

4.2. '2.5. Propagation of Reports 65

4.7'. Prototype System Overview 66

5. Scheduling Knowledge Base

5.1. OS/LAN Technical Issues 7

5.2. OS/LAN Compatibility Matrix. 71

5.3. Structured Social Practice Description 72

5.4. Scheduling Scenario Description 77

6. Future Research and Development. 74

6.1. Froblem Domain Extensibility. 74

6.1.1. Decision Aid Framework 74

6. 1.2. Situation Dependencies 75

6.1.3. Choice Principles 76

6.2. Product Engineering 77

6.2.1. Software Engineering. 7

6.2.1.1. Support. 78

6.2.1.2. Integration. 79

6.2.1.3. Literacy. 79

6. 2 Knowledge Engineering 8(

6.2.2.1. Paradigm Formulation. 81

6.2.2.2. Paradigm Description...... .. 82

7. Potential Applications 85

7.1. Commercial Post Applications 95

7.1.1. Immediate Potential86

7.1.2. Future Potential S6

7.2. Government Applications 87

8. References . B9

Appendices

A. Appendix A 9

B. Appendix B 148

C. Appendix C .

D. Appendix D 262

E. Appendix E 278

4

LIST OF EXHIBITS

TABLE 1 - THE BASIC PROCESS UNIT

TABLE 2 - THE BASIC ACHIEVEMENT UNIT

TABLE 77- SCHEDULE PARADIGM (BFU)

1. Executive Summary.

During a Fhase One Small Business Innovation kSBIR) Research

Contract we investigated the feasibility of developing a

Knowledge Dictionary System based on State of Affairs

technology. We initially chose the general problem of

developing and monitoring the schedule of a large project to

facilitate the investigation. We then added technical

detail regarding a specific schedule, the problem of

interfacing computer operating systems (OS) with local area

networks (LAN).

The investigation established that State of Affairs tech-

nology is a feasible foundation for a Knowledge Dictionary

System capable of managing knowledge and the relationships

among knowledge of different types and at different levels

of detail. The knowledge repository is a conventional

relational database management system. The Knowledge

Dictionary System is able to interact with the data diction-

ary of the database to mak.e conventional data available to

knowledge-based inference. The goal of the SBIR, to

demonstrate the feasibility of straightforward interaction

between expert system and database was achieved.

A Phase II effort to build a Knowledge Dictionary System

fully capable of managing complex scheduling is feasible.

7

This Phase II effort can reasonably be expected to lead to

a successful commercial product, and be readily extensible

to other situations where inferencing is to be performed

using data in conventional relational databases.

The scheduling problem undertaken is best exemplified by a

Government project in which: (1) some of the requirements

are met by Government actions; (2) other requirements are

met by contracts; (3) some requirements are met partially by

Government actions and partially by two or more contracts

with different contractors; and (4) requirements themselves

change during the project. Moreover, internal to contracts

and Government actions, there are options which sometimes

have impact on other options and sometimes impact externally

on other contracts or contract options. The Knowledge

Dictionary System will provide a standard and comprehensible

means to represent and track these complex relationships.

The scheduling problems that will be facilitated by a

.nowledge Dictionary System include: (1) building an

integrated and detailed overall project schedule from

initial statements of contract relationships, Government

provided capabilities and individual contract schedules;

(2) identifying real or potential conflicts and flagging

them for attention; (3) tracking requirements across

contracts and identifying what must change when requirements

8

change; (4) determining the impact of schedule changes in

one contract on other contracts and Government actions; 5)

dynamically assessing the difference between the current

schedule and what is actually happening; (6) finding ana

evaluating options when the difference between schedule and

actuality becomes unacceptable; and (7) rebuilding the

overall project schedule when options are implemented and

programs are modified.

In order to effectively solve these problems, it was

concluded that a knowledge Dictionary System applied

to the problem of managing the knowledge necessary to

perform and analyze complex scheduling must represent the

part-whole characteristics of schedules and provide support

for a richer set of inferences that encompass these char-

acteristics. It must allow fragmentary scheduling at

various levels simultaneously within a single conceptual

framework. It must allow the representation of and support

inferencing upon contingencies between and across levels as

well as within a single level. It must accept reports of

activities and accomplishments at any level and propogate

the effects of both favorable and unfavorable deviations

throughout the overall schedule. And it must automatically

provide the capability to do "what-if" analysis.

Consequently, the scheduling problem has the complexity

necessary to serve as an appropriate demonstration problem

for Knowledge Dictionary System development. At the same

time, the solution to the scheduling problem will provide

the Air Force with significant and needed capability in its

own right.

1 C)

2. Definitions.

This report makes use of terminology which nas unusual or

more specific meaning in the context of State of Affairs

descriptions in general, and those of scheduling in partic-

ular. This section provides definitions for these terms.

2.1. Social Practice. A social practice is a pattern of

behaviors engaged in by persons to cooperatively achieve a

desireable state of affairs or to prevent a state of affairs

from deteriorating to one of a less desireable sort.

Furthermore, the social practice does not succeed by luck or

accident, but is taught, learned, and done by persons; and

is done successfully by persons routinely enough to warrant

a description. The descripton does not specify which actual

behaviors to engage in on any given occasion, but codifies

what must be accomplished at each stage of the practice, the

set of optional behaviors that can lead to that accomplish-

ment, and the rules for determining who is elibigle to

engage in the various roles of each optional behavior if it

chosen.

2.2. Scenario. When a social practice actually does

occur, a description of its occurence (or possible occur-

rence) is called a scenario. A scenario description differs

from a social practice description in that, instead of

11

optional behaviors and eligibility rules, the scenario

description specifies which of the optional behaviors are

engaged in and who, in particular, engages in them. An

actual (as opposed to merely possible) scenario description

is generally not available until after the fact and, as

such, the report makes reference to "historical particulars"

as the behaviors and elements of a social practice that

actually occurs.

2.3. Community. A community is a any group of persons

who share a common world (i.e., agree upon a set of constit-

uent objects, processes, events and states of affairs such

as the "world of golf") and engage in, among other things, a

set of fundamental social practices that maintain the

community. These include, at a minimum, the practices of

conveying the status of member (or non-member) of the

community, negotiating status within the commmunity, and

using the language (jargon) of the community.

2.4. Institution. An institution is an organized set of

social practices that is of sufficient import to the commun-

ity that memebers decide to formally record its description

as a set of rules and eligibilities and to include the

maintenance of the description as a part of the social

practice itself: i.e., it is given a "life" of its own to

insure that it will survive any or all of its members.

12

2.5. Scheduling (1). All use of the term "scheduling"

or "schedule" outside of Sections 4 and 5 is with the

connotation that obviously comes to mind and needs no

further explication for the purpose of this report.

2.6. Scheduling (2). Secondly, "scheduling" is used

within Section 4 to denote the entire social practice

of planning some achievement, monitoring the progress toward

that achievement including the monitoring and revision of

inconsistencies among all elements in the practice, and

actually attaining some achievement and comparing it with

that which was planned. Formally speaking, scheduling used

in this way denotes the entire process of transition from

the social practice description to the scenario descrip-

tion.

2.7. Scheduling (3). Finally, within Section 5, the

formal social practice and scenario descriptions actually i

used in the investigation was the institution of scheduling

as it occurs in DoD when large and complex systems a. e

developed and includes the formal stages of PDR, CDR, TRR,

etc., and their attendant reporting requirements. The

difference between scheduling (3) and scheduling (2) is that

it includes formalities established by the DoD scheduling

community (most importantly, the language of scheduling in

13

that community) whereas the latter fOCLseS on the "essence',

of scheduling that could be institutionalized by a commun-

ity but hasn't been.

2.8. Needs. In the context of any social practice,

there are basic needs which, if not met, make that practice

impossible to engage in. In the context of scheduling we

thus define the concept of need as something, which if not

met, will result in a pathalogical case of the schedule.

The following are the minimal needs for a schedule to be

carried out.

2.8.1. Status. This refers to the place within a

schedule that a person or thing has and, operationally,

determines what behaviors it is eligible to be a part

of. Without status, nobody or nothing is eligible to be any

element of a schedule and thus the schedule cannot be

carried out in practice. This also implies that the social

practice of making status assignments is integral to the

social practice of scheduling.

2.8.2. Distinction. To make a distinction is to

in roduce order and meaning in a schedule by, at least,

classifying things as being of one sort rather than another.

If it is not possible to distinguish between the achievement

of a given schedule and some other achievement, it is

14

impossible to determine if the schedule exists let alone to

engage in it.

2.8.3. Adequacy. All stages oi = schedule

must have at least one optional behavior that an eligible

person is competent to perform, and for which all the

elements have at least one eligible individual. If there is

no such adequate behavior then the schedule will, at

best, miscarry.

2.8.4. Value. There must exist some princi-

ples by which one achievement can be deemed to be more

or less desireable than another. At a minimum, there needs

to be hedonic, prudential and ethical principles and, in

general, there will also be esthetic principles. Without

values, there are no means by which an achievement can

be evaluated and, hence, no motivation for engaging in any

schedule that achieves it.

2.9. Conflict. In this report, conflict denotes any

state of affairs in which one or more needs are not being

satisfied. When it is said, as it will be throughout this

report, that a schedule is in conflict, it means, first of

all, that one or more of any of the s = o1 .. -

, _ -'1-_-= n this . =_-, is = . _-,- -

' -- ' :-..'=, " " d , .
-

'q D ~ n .
-.'7'. - -'- =" I F ' -" . ,. } "]Z . : .

S':amp.E 0c -rs! iC ct aS SWe us e th e teT . r.col -, i. e

that the schledulea is in conflict in ,:,ne r core o the ways

in which it could be in conflict according to its descrip-

tion. Its use in this sense is potentially narrower than in

commonplace scheduling in that if a particular way of being

in conflict is not directly or indirectly present in the

description, conflicts of that kind will never arise (e.g.,

unless there is an explicit constraint that a person can

only be in one place at a time, a schedule that calls for a

person to be at two different places at the same time will

not be in conflict).

2.10. Knowledge. In this report, knowledge refer to

that which is necessary to engage in scheduling. More

specifically, in this usage knowledge includes, at a

minimum, for the social practice of scheduling: (a) Want;

i.e., the knowledge of the state of affairs that is desired

as a result of engaging in the schedule; (b) Competence;

i.e., the knowledge of which behaviors are called for by the

schedule and how to engage in those behaviors; and (c)

Cognition; i.e., the knowledge of the present state of

affairs (including knowledge of limited competence and want)

and what social practices are available to engage in to

alter (maintain) the present state of affairs.

16

2.11. Knowledge Dictionary. A medium or system

within the context of a given social practice for recording

the competence and cognition knowledge necessary to engage

in that social practice in such a way that a person that

wants to engage in that social practice but lacks some of

the knowledge necessary to do so may use the knowledge

dictionary to supply the knowledge that he lacks. In

addition, a knowledge dictionary ma- also include the want

component of the knowledge but that a persons ability to

make Use of the want component is severly limited in that if

he lacks that knowledge, he cannot, in principle, know that

he wants the knowledge in the dictionary in the first place.

2.12. Knowledge Base. As opposed to a knowledge

dictionary which is merely the medium or system for record-

ing knowledge, the knowledge base refers to the knowledge

that is actually recorded in the knowledge dictionary at the

moment; i.e., the range of social practices identified and

the depth to which they are defined.

2.13. Part-Whole Relation. Social oractices in

general, and schedules in particular, are primarilv de-

scribed by part-whole and part-part (see below) relations.

The description of a whole schedule is always an elliptical

(incomplete) description for which a more detailed descrio-

tion could be provided bv decomposing it into sub-tasks.

17

Converselyq schedules can be combined to yield a more

comprehensive whole schedule. In either case, the result is

to create a relationship between a part and the whole of

which it is a part, i.e., a part-whole relation, for which

both components are necessary to the existence of each as

parts and wholes (they may all exist independently and

usually do). If the whole does not exist, then nothing

is eligible to be a part of it. If any of the parts does

not exist, it is impossible to construct the whole from its

parts.

2.14. Part-Part Relation. When a part-whole relation

is created, the potential exists to have part-part rela-

tions. A part-part relation is a contingencey statement

that declares which combinations of parts may occur concur-

rently as parts of a whole.

2.15. Inference. In this report, inference is used

to denote the process by which one or more scenarios can be

formulated from a social practice description. More

specifically, as used in scheduling, inference denotos the

outcome or range of outcomes that can be reasonably inferred

from the schedule given its present state. At the outset,

the schedule is merely a social practice that has yet to be

engaged in and thus no possible outcomes exist. As the

schedule progresses; i.e., as options and elegibilities are

18

replaced with historical particulars, the range ofi possible

outcomes is constrained. A complete description of the

actual outcome can never inferred until after the fact, but

informative incomplete descriptions can be inferred at any

time once the schedule is engaged in.

2.16. Inference Engine. In this report, the infer-

ence engine(s) denote an algorithm and its implementation as

a computer program which is capable of inferring particular

aspects of possible outcomes of a social practice, a

schedule in particular, given only limited cognitive

knowledge of the present state of affairs. In some cases

the term is Used in the singular without qualification to

denote the aggregate inferencing mechanism that infers every

aspect of the possible outcomes, hence the outcome itself.

In other cases, it is used in the qualified plural to denote

the mechanism that infers some aspect of the possible

outcomes based on a particular kind of knowledge.

2.17. Part-Whole Inference. In this report, part-

-whole inference is used to denote the kind of inference

that can be formulated from part-whole and part-part

relations. Part-Whole inference is fundamentally different

than logical (first-order predicate logic) inference in one

important way. Logical inference is serial in nature and

always complete. I.e., given

19

Consequent if Antecedent, and ... and Antecedent,

the consequent is true only indirectly by virtue of all the

antecedents beinq true. And if any of the antecedents are,

themselves., consequents then it is true only indirectly by

virtue of its antecedents being true, ad infinitum. It is

only where antecedents have no further antecedents, called

ground clauses, that direct assignment of truth values can

be made. By contrast, part-whole inference is parallel in

nature and always incomplete. Truth status can be directly

assigned at any level of the part-whole decomposition; i.e.,

at the level at which it was actually observed, and the

truth status of a whole at any level determines the truth

status of its parts (and their parts, ad infinitum) and is

always maintained as the set of parts whose existence needs

to be confirmed.

2.18. Small Business Innovation Research (SBIR). The

SBIR program exists in all Government agencies to encourage

small businesses that do not have the capital to maintain

their own research and development programs to create

innovative and commercially viable products. Throughout

this report there are references to the Phases (I, II, III)

of an SBIR contract. Normally, a Phase I SBIR effort is a

small (6 man-month) contract with the Government to estab-

lish that an innovative concept is sound, feasible, and

commercially viable as the basis for a product. A Phase II

20

SBIR effort is a larger (2 man-year) contract with the

Government to actually develop a prototype of the product

for hands-on testing and evaluation. A Phase III SBIR

effort is a full-scale project, funded from orivate sources

attracted by the results of Phase II, to develop and market

the product in the commercial sector.

21

3. Introduction.

All social systems, from the Government to corporations

to small business enterprises must deal.. on a daily basis,

with the problems of integrating what's actually happening

with what they believe should be happening. A standard and

comprehensible system "for expressing general commonsense

knowledge for inclusion in a general database... [l]" could,

to a large extent, relieve the present need for training in

a vast number of social practices while concurrently

enhancing the expertise of individuals participating in

those practices. During a Phase I SBIR Contract 12] we

inveltigated the feasibility of developing a Knowledge

Dictionary System based on State of Affairs [3] technology

to achieve this result. To facilitate the investiga-

tion, we chose a specific social practice that appears to be

paradigmatic in all enterprises: the practice of developing

and monitoring the schedule of a large project. Typically,

such projects are complex, extend over lengthy periods of

time, involve the meshing of a variety of components and

activities at different levels, and, most importantly, do

not proceed according to plan. It is these characteristics

that make managing the knowledge necessary to perform and

analyze complex scheduling a difficult problem within the

confines of existing technology [4].

2

The problem is best exemplified by a Government project in

which: (a) only some of the requirements are met by

Government actions; (b) other requirements are met by

contracts; (c) often, a requirement is met partially by

Government actions and partially by two or more contracts

with different contractors; and (d) the requirements

themselves change at discrete points of time during the

project. Moreover, internal to contracts and Government

actions, there are options which have impact on other

options, and sometimes impact externally on options in other

contracts. The consequence of not having a standard and

comprehensible means to represent these complex relation-

ships presents numerous problems in at least the following

taskIs:

(a) receiving initial statements of contract relation-

ships, government provided capabilities , and individual

contract schedules and integrating these into an overall

project schedule;

(b) identifying real or potential conflicts and flagging

them for attention;

(c) track-ing requirements across contracts and identify-

ing what must change when requirements change;

23

(d) determining the impact of schedule changes in one

contract on other. contracts and Government actions;

(e) dynamically assessing the variance between the

current schedule and what is actually happening; and

(f) finding and evaluating options when the variance

becomes unacceptable and rebuilding the overall project

schedule when options are implemented.

In summary, managing the knowledge necessary to perform and

analyze the scheduling of large, complex projects is a

significant problem throughout Government and private

enterprise. Yet the tools available to deal with this

problem, no matter how elaborate, remain limited in their

ability by virtue of having the same technological founda-

tion. one that has not changed for many decades.

An effective Knowledge Dictionary System applied to the

problem of managing the knowledge necessary to perform and

analyze complex scheduling must, at the foundation level,

represent the part-whole characteristics of schedules and

provide support for a richer set of inferences that encom-

pass these characteristics. It would allow fragmentary

scheduling at various levels simultaneously but within a

single conceptual framework of contingencies. It would

24

allow the representation of these contingencies, not only

within a single level, but also between and across levels.

And it would accept reports of activities or accomplishments

at any level and propagate the effects of both favorable and

unfavorable deviations throughout the overall schedule,

including hypothetical "what if..." deviations.

The Phase I investigation revealed that State of Affairs

(SA) is a feasible means to represent the knowledge

necessary to schedule analysis. The essence of this

representation is to view a schedule as the part-whole

decomposition of a process, most of which, at the time of

analysis, has not yet unfolded and is not yet available as

observable information. Specifically, the representation of

a schedule must capture at least the following character-

istics of schedules.

(a) A schedule, being a description of a process,

divides into smaller, related schedules without limit.

(b) An objective can be achieved by any number

of optional processes, each of which has a schedule.

(c) The options available to achieve an objective

within a schedule are contingent on the options chosen to

achieve other objectives in that schedule.

(d) If an option in a schedule requires a resource,

then its viability is contingent on other options in that

schedule requiring that resource.

(e) If an option has temporal interrelation-

ships with other options in a schedule, then its state

(beginning, occurring or ending) is contingent on the state

of those options.

(f) When options in a schedule are in conflict

due to resource requirements or temporal interrelationships,

the process by which the conflict occurred is an (undesir-

able) option at some level of that schedule.

(g) The achievement of an objective in a schedule

is equivalent to the occurrence of some option for every

process necessary to that achievement.

(h) What may be reported as a process needs to

be re-describable as the achievements resulting from the

options that constitute that process; and what may be

reported as an achievement needs to re-describable as the

options for the processes that lead to that achievement.

26

The investigation also revealed that the kinds of inference

that can be performed over part-whole representations of

schedules are considerably richer and more complex than

those presently available and that all of these, once the

part-whole representation is in place, are feasible to

implement as computer-based inference algorithms. Specific-

ally, the inference algorithms applied to part-whole repre-

sentation of schedules must satisfy the following object-

ives.

(a) The part-whole inference process must be

augmented to recognize that some achievements in a schedule

may be safely assumed to exist for long periods of time

while others must monitored at very short intervals. [5]

(b) Frequently, it is the case that one of two

(or more) different achievements in a schedule may have

occurred given the reported information about the progress

toward them, but due to real world resource limitations, it

could not be the case that more than one is possible

concurrently C6]. When this occurs, the process of part-

-whole inference must be able to:

(1) recognize that a partial resource conflict

27

exists and has the potential to create a pathologicai

state of the schedule.

(2) continue to analyze ooth possible states

of the schedule in terms of other part-whole resource

relationships; and

(.) when a total resource conflict exists.

support the application of choice principles to determine

which state of the schedule is more desireable.

(c) It is also frequently the case that only

one of two or more different achievements in a schedule can

occur at a given time due to temporal conflicts. [7l

Moreover, these may not be simply sequential relationships

but may also involve complex overlapping temporal rela-

tionshios. In such situations, the process of part-whole

inference must be able to incorporate temporal chains of

reasoning that:

(i) recognize that a partial temporal conflict

exists and has the potential to create a pathological

state of the schedule;

(2) continue to analyze both possible states

22

m,,,.,m m m mmmm mm n n

Ce] 7_ ---- _2~h p E... 2 7-1

support the appl i cation C I ,-oi, e Fr in Lc, t-I ,-_ e .C M -I

wjhich State of the schedule is more desireable.

(d) in the case of both rosource and temporal

conflicts, the support of choice principles must be provided

in at least two ways:

(1) choice principles may be represented

in advance as descriptions of several versions of a

schedule (e.g.. aggressive, conservative) in which case

the most desireable version will emerge automatically

(i.e., no conflicts will e-ist for one of the versions);

(2) choice principles may be applied ad

hoc in which case the part-whole inference process must

be able to provide notification of where in the schedule

these conflicts exist.

In either case the part-whole inference process must support

removing a version of the schedule and determining the

consequences of eliminating its associated conflicts.

29

(e) Perhaps the most critical requirement is

that the process o part-whole inference must be able to

draw inferences from an admixture of report types affecting

different levels in the schedule.

(1) In the first case the process must

be able to infer that multiple reports of different types

are, in fact, reports about the same (or part of the

same) progress in the schedule and then use these

equivalences in its chain of reasoning. [8)

(2) In the second case, it must be necessary

to establish the existence of parts from wholes as

well as conversely. Most familiar is the induction that

if all the prerequisites to an achievement are complete,

then the milestone has been reached. Less familiar, and

unique to part-whole inference, is the deduction that the

completion of an achievement implies that every prereq-

uisite is complete (and some of those may be prerequisite

to other achievements). £9]

Moreover, allowing heterogeneous reporting not only inte-

grates the formal reporting systems already in place,

but also taps less structured sources of information

(meetings, conversations, etc.) that already exist but are

30

rarely incorporated into the scheduling process in any

formal way.

In summary, the Phase I investigation revealed that a system

which effectively addresses the problem of managing the

knowledge necessary to perform and analyze complex schedul-

ing must capture the part-whole characteristics of schedules

and provides support for a much richer set of inferences

that encompass these characteristics. The system has been

shown to be both possible and practical to develop and

would have enormous potential throughout both Government and

private industry.

4. KDS for Scheduling Support.

This section is divided into three parts. The first

presents the concepts and facilities of an innovative

Knowledge Dictionary System for scheduling support. The

second presents the design requirements that must be

satisfied and and the feasibility of their implementation.

The third provides a functional overview of a pre-prototype

Knowledge Dictionary System based on this concept that was

applied to the scheduling problem as an integral part of the

Phase I investigation. The knowledge base that was actually

developed during the investigation and implemented within

the system is presented in the following section.

4.1. Concepts and Facilities.

A Knowledge Dictionary System is comprised of two princi-

pal components: the knowledge representation structure; and

a part-whole inference engine that operates on this struc-

ture. The knowledge structure is a collection of Basic

Schedule Units which encapsulate the descriptions of (a) the

processes and achievements that comprise the schedule, (b)

transformations for redescribing processes as achievements

and conversely; and (c) the part-whole relationships among

these constituents. The part-whole inference engine

navigates among the schedule units to (a) determine the

degree to which higher-level schedule units are complete

based upon the state of their constituents., (b) propaqate

the impact of reports about lower-level schedule units to

the higher-level units of which they are a part., (c) detect

actual or potential conflicts due to either resource or

temporal constraints.

4.1.1. Knowledge Structure. Corresponding to the

basic concepts of scheduling (process and achievement) is a

format for representing concepts of each type. These are

the Basic Process Unit (BPU) and the Basic Achievement

Unit (BAU). The reason for different units is that the

first part of each represents the observational aspect of

the concept (the way it was reported: i.e., a process has

stages, an achievement has deliverables, etc.) The second

part of each format has, embedded within it, the elemental

resource aspect of the concept which represents the means of

converting from one to the other.

Within the Knowledge Dictionary System the representation

units are be recorded as a set of interrelated tables. The

reasons for this are twofold. First, from experience with

our existing implementation, one will not want to deal

with an entire representation unit at once, but rather will

want to focus on one or two specific aspects of it (e.q.,

the list of options for a given stage of a process) at a

time. Secondly, readily available Database Management

Systems handle tables (relations) with great facility and it

is considered to be of great importance that the Knowledge

Dictionary System be able to make use of these readily

available facilities rather than to depend on its own,

unique way of representing knowledge. [10] For illustrative

purposes the representation units are presented in this

section in their expanded hierarchic form in Tables 1 - 2.

In addition, the fact that separate reports can be formulat-

ed as reports of the same (or part of the same) schedule

requires that there be logical relationships among the

different representation units. These are represented

within the Knowledge Dictionary System as a set of Transi-

tion Rules. These are systematized as follows:

TI) A schedule is a totality of related processes

and/or achievements and/or schedules.

T2) A schedule (or process or achievement) is a

constituent of a schedule.

T') An achievement is a schedule that has other,

related achievements as immediate constituents.

34

T4) A process is a sequential change from one

achievement to another.

T5) A process is a schedule having other, related

processes as immediate constituents.

T6) An achievement is a direct change from one

schedule to another.

T7) An achievement is a schedule having two

schedules as constituents (i.e., "before" and

"after") .

TS) A given schedule's having a given relationship

to a second schedule is a schedule.

T9) That a process begins is an achievement and

that it ends is a different achievement.

TI1])) That a process occurs (begins and ends) is a

schedule having three schedules as constituents

(i.e., "before.." "during," and "after").

In addition to these, because of their inherent and neces-

sary recursion, it is also necessary to have limiting cases

.' .5

that can be invoked to "stub off" the unlimited decomposi-

tion or composition permitted by the rules. These are:

LI) The schedule which includes all other schedules

Ii.e., the master plan).

L2) An achievement that has no constituents, hence

is an atomic particle (i.e., an indivisible

resource).

L3) A process that has no constituents, hence no

beginning that is distinct from its end (i.e.,

the equivalent of an achievement).

36

TABLE I - THE BASIC PROCESS UNIT

P-NameA: The process "Name" of process A

P-DescriptionA: The "Description" of A. It specifies:

I. P-Paradigms: The major varieties of P-NameA. This is a technical
convenience. Every process has at least one paradigm. But many
processes can occur in ways so different that it is easier provide a
separate description for each rather than to encumber a single descrip-
tion with an unmanageable number of contingencies. For each paradigm,
the following are specified:

(a) Stages l-K: These are "Names" of sequentially distinct progres-
sions within A. They are systematically specified as P-NameAll,
P-NameA12, ... ,PName-AlK for Paradigm 1. For each stage are
specified:

(1) Stage-Sets I-M: These are the "Names" of the subsets of a
stage that have temporal interrelationships that are not merely
sequential and are distinct in that each element of the set
corresponds to a definable achievement. They are systematically
specified as P-NameA111, P-NameA112 for stage 1. For each
stage-set the temporal relationships among the elements are
defined.

(2) Options I-N: These are the "Names" of various exemplars of
the stage in question, i.e., the various ways in which that the
progression could occur (every stage has at least one option).
Each Option is systematically specified as P-NameA111, PnameA112,
... ,PnameAllN. For each option is specified a set of processes,
which, if each were completed, would result in an achievement that
would qualify as the progression denoted by the stage. These are
processes in their own right and thus any further specification is
accomplished by another BPU.

(b) Elements: These are the logical categories within the process for
the resources necessary to the occurrence of the process.

(c) Individuals: These are the formal exemplars of Elements that are
actually present or available at the time the process occurs.

(d) Eligibilities: These are the constraints that exemplify which
individuals are capable of being which elements in an occurrence
of the process.

(e) Contingencies: These express co-occurrence constraints among the
stage-set-options of the process (i.e.. the options available at
one stage of the process are contingent on which options may
have been selected at another stage - and it is these, when they
become too complex, that motivates the employment of different
paradigms).

37

f) Versions: This is the net effect of all of the above. It
captures the result that the different versions of the process
P-NameA on different occasions need not resemble one another in
any way other than their being alternative versions of P-NameA.

38

TABLE 2 - THE BASIC ACHIEVEMENT UNIT

A-NameA: The achievement "Name" of achievement A

A-DescriptionA: The "Description" of A-NameA. It specifies:

I. A-Paradigms: The alternative decompositions of A-NameA. This is a
technical option. If only one paradigm exists, it will be the same as
A-NameA. For each paradigm, the following are specified:

(a) Constituents: A list of immediate constituents which are system-

atically designated as A-NameAll, A-NameA12, ... ,A-NameAlN for
paradigm 1. Each constituent can now be expanded (decomposed)
using another Basic Achievement Unit.

(b) Relationships 1, 2, ... ,M: These are given by a list of rela-
tionships in which each item on the list is specified as follows:

(1) Name: An expression which identifies an N-place relation-

ship. N may vary among different relationships in the list.

(2) Elements: A list of N elements, each of which is one of the
members of the N-place relationship.

(.) Individuals: These are the formal exemplars of Elements that
are actually present or available to participate in the
relationship when it occurs.

(4) Eligibilities: A specification of which individuals may or
must participate as which elements in the relationship by
virtue of their constituency in A-NameAl.

(5) Contingencies: These express constraints of two kinds;
attributional constraints on the elements of the relation-
ship, and co-occurrence constraints among the elements of the
relationship.

39

4.1.2. Part-Whole Inference Engine. The Know-

ledge Dictionary System, by virtue of its knowledge repre-

sentation structures, is able to continually analyze the

part-whole character of a schedule. most of which has

not yet occurred or is not yet available as reportable

information. It does this routinely, in much the same way

as a person is subconsciously aware of what he thinks is

going on, and continually re-assesses that conclusion in

light of new developments as he becomes aware of them. And

while the system, itself, does not impose any rigid distinc-

tions among the levels of part-whole characterizations (the

system treats this as a continuum), it is helpful to

explain the behavior of the inference engine by reference to

three levels: (a) the "master plan" level which represents

an overall pattern of activity directed at the achievement

of the project, most of which has not yet occurred but which

will serve as an explanation for what did occur after the

fact; (b) the reporting level which represents situation--

dependent facts (empirical identities) as they occur,

without regard for how those facts may or may not fit into a

higher level pattern; and (c) a logistical level in which

facts reported in one context of the schedule can be

redescribed as facts in the another context of the schedule.

4.1.2.1. Master Plan Level. The goal of the

inference engine at the master plan level is to determine

40

that the plan is or is likely to be completed as des-

cribed. This is accomplished by a process termed "back-

-chaining" in which the inference engine determines which

constituents of the plan are essential to its being com-

pleted. In turn, each of those constituents is similarly

analyzed and so on until the inference engine can establish

that, in this situation, an empirical individual is avail-

able and eligible to be each element of each constituent.

If it succeeds, it records the results of the analysis and

the time [1i] at which the conclusion was reached. Each

time it fails, it records the constituent that it failed to

materialize, the time that the failure occurred and the

reason that the failure occurred, and proceeds to another

constituent for which the entire process is repeated. This

process is continuous and the result is a record of the

chain of reasoning, and the links in that chain where the

reasoning failed, so that the inference engine can repeat-

edly retry to establish each unconfirmed empirical identity

until it successfully works backwards (hence, back-chaining)

to the master plan from which it started.

4.1.2.2. Reporting Level. The goal of the

inference engine at the reporting level is

straight-forwardly that of establishing empirical identities

and it does this via a process termed "forward-chaining".

When the inference engine encounters the report of a fact

41

that is eligible to be an essential element in some level

of the schedule (e.g., is an option for a stage of some

process), it processes the contingencies that operate as

constraints on its eligibility. This process is also

continuous in the sense that, each time a new report enters

the system, the inference engine checks which options for

an element currently under consideration may have become

eligible by virtue of that fact, and proceeds to work

forward (hence, forward-chaining) in search of new empirical

identities. Whenever an empirical identity is established

(or discounted), the result and the time that the result was

obtained is recorded.

4.1.2.3. Logistical Level. Finally, the goal

of the inference at the logistical level is to determine

whether empirical identities established in one context of

the schedule can be redescribed as empirical identities in

another context of the schedule. Empirical identities are

cases where one thing is the saps thing as another thing,

not as a universal or necessary vact %*,he ,.ia: :a-rctanj .

is always ano necessaril-v \ the same thino as trapezoio

iith right anales') :ut on .E a a historicai, mpiricai

act.; i.e.. es in which in this jsitU-ation what is

described as F is the same thina as what is described as Q

and P, etc. The engine does this by a process termed

"cross-chaining". Whenever an empirical identity is

42

established at the observational level the inference engine

examines all similar constituents, without regard for what

they are constituents of. I.e., it cuts across the chain of

inference hence, cross-chaining) and merely records the

result and the time at which it was obtained. It does

nothing further at this point. However, when the inference

engine is subsequently back-chaining or forward-chaining in

another chain of inference it will encounter and make use of

these results.

4.2. Design Requirements.

The investigation of how successfully the technology

supports scheduling and the practicality of implementing it

within existing software technology proceeded along two

lines in parallel. The first of these was to transform the

knowledge base into a set of database relations and this is

discussed first. The second was to determine the require-

ments for processing the knowledge base in terms of a

generalized set of database operations. This represents the

"inference" engine.

4.2.1. Knowledge Base Development. The develop-

ment of the knowledge base is principally the task of

developing a reasonably normalized relational schema of the

information represented in both the Basic Process Unit (BPU)

43

and the Basic Achievement Unit (BAU). Due the essential

similarity between the BPU and BAU, it was anticipated that

a single schema will serve both and this, in +act, turned

out to be the case. The principle relations developed

include the Part-Whole relation, the Element-Individual

relation, the Eligibility relation, the Temporal-Constraint

relation, the Assignment relation, and the Connectivity

relation. Furthermore, although the BPU and BAU provide for

stage-sets and option-sets, the normative case is that (a) a

stage is singular, and (b) only a single process is neces-

sary to satisfy the occurrence of that stage. The following

discussion assumes this simplification for brevity unless

otherwise noted. The convention of underlininQ the domains

which comprise the key of the relation is employed.

4.2.1.1. Part-Whole Relation. The notion that

the option of a stage of a paradigm of a process is, itself,

a process is the essential closure property that has to be

captured in the part-whole relation.

(PROCESS-NAME, PARADIGM-NAME, STAGE-NAME, OPTION-NAME)

Note that an OPTION-NAME will have the same status as a

PROCESS-NAME which creates the desired closure. If we

decompose this into binary relations as follows, we disclose

the first major naming problem we have to contend with.

44

(PROCESS-NAME. PARADIGM-NAME)

(PARADIGM-NAME * STAGE-NAME)

(STAGE-NAME, OPTION-NAME)

(PROCESS-NAME, OPTION-NAME)

The last of these is the relation with the transitive

closure property. The problem disclosed is thus. While

PROCESS-NAME and OPTION-NAME are clearly unique across an

entire schedule (even if that is Li) it is not clear whether

or not PARADIGM-NAME and STAGE-NAME are. If they are then

the original relation becomes:

(PROCESS-NAME, PARADIGM-NAME. STAGE-NAME, OPTION-NAME)

In addition, each of the key components above has a truth

status and some kind of date-time group attached leading to

a very large (i.e., wide) relation to be maintained and

processed. This will cause enormous efficiency problems in

the chaining process since the inference engine wants a very

compact relation so it can load huge restrictions of it into

fast memory.

45

The obvious solution is to have the user maintain (or, if

possible, do it for him) a highly encoded identifier for the

key and for the OPTION-NAME such as a legal outline notation

(e.g., 42.2.1.2). The exception to this is that an OPTION--

NAME needs two identifiers: one within the process descrip-

tion; one independent of any process description (since it,

of course, can occur in several processes). So we will

obtain a relation in which the option is represented twice,

once as part of the process and once independently of any

superior process; and note that this is a general require-

ment, in any case, when we deal with option-sets.

(PROCESS-NAME, PARADIGM-NAME. STAGE-NAME. OPTION-NAME,

OPTION-PROCESS-NAME)

Now, since each component of the key needs a truth status

(TS) and date-time group (DTG) associated with it; and we

want to keep the relation seen by the inference engine as

small as possible; that suggests that we need a way to

normalize the relation that allows us to not have to

maintain all of these concurrently; i.e., once the option is

true, we don't need its truth status anymore because the

stage is now true, and the same follows as we work up

through paradigm and process. Thus, if we construct the

code above to represent the key and call it PFSO and call an

46

identical code OPFSO to represent the independent process

identifier, we can create a relation as follows:

(FPSO OPPSO, LEVEL, STATUS, DTG)

where LEVEL refers to what the status applies to; i.e., the

process, the paradigm, the stage or the option. Hence, if

the level were option and the status was true, the inference

engine would know to stop looking at any other options for

that stage and start looking for options for the next stage.

We will, of course, want to provide a relation, either

separate or with these included, that has the explicative

names for benefit of the user and even some explanatory text

but the inference engine need not be aware of this. If this

is done in a single relation it be slow because the infer-

ence engine will have to project out all the text before it

can get to work. If separate relations are maintained, it

may appear to be a burden to the user but, in fact, is

probably not since the existing implementation allows

multiple relations, synchronized by a join clause, to appear

on the screen concurrently.

4.2.1.2. Element-Individual Relation. While

the Part-whole relation determines that a process has

occurred because at least one option for each of its stages

47

has occurred, the element-individual relation determines

that a process is, at least, possible because at least one

individual e.xists for each of its required elements. In

some ways this sounds a bit redundant; i.e.. there are two

ways to reach a conclusion; but, in fact, that is not the

case.

In the early drafts of a schedule it may be somewhat

confusing to read because the formal elements of the process

will be very much interspersed in the process descriptions,

while not yet having been recognized as formal elements.

Later drafts will read almost entirely like outlines of the

process/stage/stage-option (process) decomposition with very

few references to elements. And these are easier to read

since, if the stage-options are listed (which are, of

course, processes in their own right), it is only important

that a stage has or hasn't occurred and if all of them have

occurred then it's the case that the process has occurred

and the elements are no longer relevant.

However, at the bottom of the decomposition there are no

stage-options to check. The only criteria available are the

elements. I.e., at this level. there are no process

descriptions per se but only SA descriptions which place

elements and individuals in a one-to-one correspondence via

eligibility rules.

48

The first problem to resolve is, again, the duplicity of

names. Every element requires a global (i.e.., LI) name as

well as a name unique to the (lower-level) process in which

it occurs. This is what will facilitate the forward-chain-

ing (bottom-up) that needs to occur when element-individual

data changes in the database. Hence, the relation obtained

will be very similar to that used to capture the part-whole

information:

(PPSO. OPPSO. ELEMENT, INDIVIDUAL)

Note that this provides a list for every PPSO of the

elements and individuals applicable, even though that PPSO

may, in fact, be Li. In addition, it allows that the

elements, the eligible individuals may vary from one PPSO to

another - an essential requirement. Moreover, since a given

element and individual eligible to be that element, are

concurrently both independent of and in the context of a

particular process at any level, we can capture the Li

description by the relation:

(ELEMENT, INDIVIDUAL, RULE-NAME)

where the "*" indicates a an Li (or "null") PPS or,

alternatively, provide explicit values for the PPSO putting

49

the description in the context of a particular process

without altering its description in the Li context [12).

4.2.1.3. Co-occurrence Relation. Not surpris-

ingly, a relation that captures constraint rules has a

character very similar to that of the part-whole relation.

If elements/individual names can be appended with PPSO

names to make them specific to a given process, then the

same principle can be applied to constraints (this is quite

different from the PROLOG approach in which all rules are

essentially global). Ignoring generality of rules for the

moment, the basic form of the relation is:

(CONSEQUENT-NAME. ANTECEDENT-NAME, STATUS, DTG).

If we embed the PPSO in the names of the ELEMENT and

INDIVIDUAL, we again create a situation in which rules can

be stated in any context (even LI) independently of any

other context - which is, for now, the desired result

E1:3. To the extent that co-occurrence constraints only

involve stage-options [14), the basic form of this relation

is, again, that of the eligibility relation with both the

CONSEQUENT and ANTECEDENT slots being filled with OPPSO

and PPSO names respectively. Hence:

(FPSO. OPPSO, S-ATUS,. DTG).

50

If these are stated within the contex<t of a given process,

the information is probably derivable from the part-whole

relation, although at the expense of performing a projection

of that relation. However, this constraint does not

allow for an expedient treatment of global (LI) constraints.

4.2.1.4. Temporal Constraint Relation. As

long as we assume that stages occur one after the other, a

relation to represent the sequentiality of stages is

probably not necessary as we can use some sort of encoding

of the PPSO to represent that information. This is probably

a very idealistic situation and the principal motivation for

stage-sets [15]. In fact, in the general case, we probably

have an analogy of Gray's concurrency problem [16] which is

best illustrated graphically. If S1 represents stage one

and $2 represents stage two and they can be of varying

durations then we can get at least all of the following

cases:

a) S1

b) li

c) S1

S.-

d) S1

e) S1

f) S1

i- I -

g) S1

$2

If S2 begins before S1 ther, we get all of the above diagrams

with the names interchanged. Note that the above cases are

only for two stages. For now, a relation that captures only

this would be nice in the hopes that if it works for two it

will carry any multi-stage interdependencias but such is not

at all obvious yet and needs additional work [17].

The first problem to address is how to represent the

information in normal form. At first glance, at least the

following information is needed:

52

a) that the start of 32 is related to the =tart of -1;

b) the end of S2 is related to the start of 31;

c) that the start of S2 is related to the end of SI;

d) that the end of S2 is related to the end of SI;

e) for each of the above, the kind of relationship,

i.e., before, coincident, or after.

This would yield a rather cumbersome relation for each pair

of stages that are temporally related:

(PPS01 F'PS02. 2SS, 2EIS, 2SIE, 2EIE)

in which ySxS encodes whether y Starts before, coincident

with, or after x Starts, etc. This allows a stage to be

pair-wise temporally dependent on any number of other stages

but does not, as previously stated, allow n-way depend-

encies among stages. Another approach that might work (and

would certainly make the relation more tractable, would to

be replacing the four endpoint relationships with a single

(or possibly two) state relationship; e.g., S2 can only be

occurring if S1 is occurring (has begun and hasn't ended'.

53::

The two approaches may be equivalent but further analysis

is required.

The second problem to tackle is "what to do witK the

information" once we've got it so we can determine a

sensible way to store the information for processing.

Whether the processing is a further complication of the

part-whole inference engine or a separate process that

independently generates data for the part-whole inference

engine can be taken up at a later time. For now, we

may as well think of it as a separate process since it's

certainly performing a drastically different function than

part-whole inference.

The essence of the analysis at first glance seems to be that

of queuing. The goal is to determine whether or not S2 has

occurred (i.e., reached its endpoint) and that is dependent

on where S1 is as far as its state is concerned. And, in

turn, Si may be similarly dependent on some other stage,-:

[18J. Thus we can visualize each stage o! a process, and toe

state it is in tnot bequn, t--i, nnin , rq- T ., S i T-q,

ended, et c, as a "resource" for which other st aes are

.o,r-ostinr ie. when a stage is analyzed. the list of

stage/state combinations it requires to be in a given state

is queued up against the stages on which it depends. Then,

periodically, the queued stages are compared with the

54

stage/state they are waiting for and those whose require-

ments are satisfied are dequeued and their state is updated

E19].

While there are numerous solutions to queuing than encompass

the notion that a resource (or a request for it) can be in

numerous states, an approach analogous to Gray's seems a

natural starting place (since we began by stating the

problem in a way similar to his.

Before proceeding to develop a queue structure and protocol,

we need to solve two problems:

a) develop a compatibility matrix of states so that if

a request is that a state is occurring and the state

is beginning then it is natural to grant the

permission to continue (for the waiting stage to

move to the next state);

b) victim selection algorithms (these are, essentially,

the choice principles) so that if two or more stages

are deadlocked then the least likely can be removed

from the queue and restarted somewhere else (or

if it's already queued somewhere else, then let it

proceed there to see what happens).

55

The first of these seems rather straight forward although we

will have to come up with a number of states in which a

process can be other than those defined in the transition

rules alone. The second seems difficult at best. There are

simply too many choice principles (as defined in Place [203)

and their totally content-free nature makes it doubtful

whether the system can determine which apply to which

situations. Perhaps this is the one problem during the

prototype phase that we can "throw over the wall" to the

user. I.e., when there is a conflict, the system can point

out the candidate victims but the user will make the choice.

4.2.1.5. Assignment Relation. As a project

proceeds, eligibility rules are tested by accessing the

underlying facts stored in a database and as historical

individuals are found that meet the constraints they are

actually assigned to be a given element of a process. This

information cannot be captured in the eligibility relation

because that would cause the eligibility rules to be lost in

the event that the individual is later de-assigned (e.g.,

due to a resource conflict) and would also preclude reuse of

the process description that lead to the current state of

the project at a later time.

The basic requirement is to create a relation that keeps

track of all the individuals that are available for assign-

56

ment as well as their assignment status; either which

element (or elements in the case of resource competition)

they are assigned to or the fact that they are not currently

assigned at all.

An obvious solution to this relation would be

(INDIVIDUAL,PF'PSO.ELEMENT.STATUS)

Note that, like it or not, the combination of FPSO and

ELEMENT is a globally unique name and it could not be

otherwise since you have to know to which element the

assignment is being made 121]. If an individual is Unas-

signed then the PPSO will be null or LI depending on how one

thinks about it. Tf an individual is pending assignment to

several elements, then there will be multiple entries in the

relation and the STATUS field will reflect the conflict.

And it may well be the case that an individual really is

assigned to more than one element (e.g., a single person is

frequently both the Principal Investigator and the Project

Manager). Hence, it really is necessary that all of the

domains in the relation are needed to form the key. Other-

wise, you would not be able to distinguish among the above

possibilities (i.e., when multiple entries for an individual

exist for different reasons).

57

4,2.1.6. Connectivity Relation. If all of the

above relations exist for a given PPSO except the temporal

constraint relation (it has no entries for that PPSO) then

what we have is either an achievement description or a

process description 122]. If we proceed to record the

before and after state of affairs related to a process, then

we need to capture the information relative to that connect-

ivity. (Interestingly enough, it is precisely that inform-

ation that represents the formal progress reporting of

conventional scheduling systems). Thus we need something of

the form

(BPPSO.PPSOAPPSO)

where PPSO is the process, and the other two are the before

and after states of the project (achievements). It's

probably not the case that you can get away with only PPSO

as the key since you could have only one paradigm for the

process yet several paradigms for the before and after

states of affairs. The converse will not be the case since

each paradigm for the process has a unique name. There is a

legitimate question remaining when it is the case that

the before and after achievements are the same, even though

they're different paradigms; i.e., can you eliminate the

paradigm information altogether [231.

58

4.2.1.7. Summary of the Normalization. The

basic relations summarized in preceding paragraphs would

appear to capture the information essential to both process

and achievement descriptions, at least as the inference

engine needs to see it. There will, undoubtedly% be

additional relations for the benefit of the user (explan-

atory names, textual descriptions, etc.) although the

inference engine will not require these even though the

essential relations could be automatically derived from

these in a later version. Many of the aforementioned

problems were not evident in the reference problem but they

all appear likely to occur in any reasonably complex

schedule and it is thus better to deal with them now since

they significantly complicate the inference engine design.

4.2.2. "Inference" Engine. An implementation of

a Knowledge Dictionary System for scheduling support

necessarily includes the functionality to create, update.,

and maintain the schedule description. This is already

exists as a prototype system developed partly prior to and

partly in connection with the investigation and is described

in Section 7.7.1. The work discussed in this section is

principally the development and augmentation of part-whole

inferencing to satisfy the requirements of scheduling

support.

59

4.2.2.1. Basic Part-Whole Inference. The

software for the basic process of part-whole inference is

similar to but more extensive than rule processing. The

specific requirement to be satisfied by the basic part-whole

inference engine is as follows. If W1 and W2 are schedules

(which may be parts of other schedules, etc.); and WI is

known to have occurred if its stages, P1 and F2 have

occurred; and W2 is known to have occurred if WI has

occurred; then basic part-whole inference is capable of

inferring any or all of the following:

(a) if the elements of P1 and P2 have been satis-

fied (i.e.. there exists at least one individ-

ual eligible to be each element), then P1 and

P2 have occurred;

(b) if P1 and P2 have occurred then WI has occur-

red;

(c) if W1 has occurred then W2 has occurred;

(d) if W1 has occurred, then the elements of P1 and

P2 have been satisfied;

(e) if W1 has occurred, then F1 and F2 have

occurred.

60

4.2.2.2. Resource Competition. The basic

process of part-whole inference, alone. is insufficient for

dealing with the resource competition problem posed bv

scheduling. It it necessary to have a specific algorithm

for tracking resource competition, including the ability to

provide notification when such competition exists. The

algorithm is as follows. If P1 and P2 are both processes

serving as options of S1 and S2 respectively and requiring

resources RI and R2 respectively; and RI and R2 are both of

type R; and R > P1 + R2; the part-whole software needs to:

(a) detect this as a partial resource conflict;

(b) note P1 and P2 as being in conflict because of

R;

(c) provide the information in (b) to the user on

request,

(d) find a set of combinations of other options for

S1 and S2 {(Px,Py)} that do not conflict

because of R;

(e) provide the information in (d) to the user on

request;

61

(f) continue the analysis of P1 and P2 in terms of

their requirements for other resources.

By virtue of this algorithm, the user may suspend the

inference, substitute one of the (Px.Py), and restart the

inference from the point of conflict.

4.2.2.3. Temporal Conflicts. The basic

process of part-whole inference is also deficient for

scheduling in that it lacks a specific algorithm for

tracking temporal interference, including the ability to

notify the analyst when such interference exists. Such an

algorithm is defined as follows. If P1 and P2 are processes

serving as options of S1 and 62 respectively, and P1 cannot

begin until P2 begins (or occurs or ends, etc.); and P2 is

a process with a similar temporal dependence on P1; and

these dependencies are in conflict; then the software shall:

(a) detect this as a partial temporal conflict;

(b) note P1 and P2 as being in conflict because of

their temporal state (beginning, occurring,

ending, etc.);

62

(c) provide the information in (b) to the user on

request;

(d) find a set of combinations of other options for

S1 and S2 {(Px,Py)} that are not in temporal

conflict;

(e) continue the analysis of PI and P2 in terms of

their other temporal dependencies.

By virtue of this algorithm, the user may suspend the

inference, substitute one of the (Px,Py), and restart the

inference from the point of conflict.

4.2.2.4. Choice Principles. The basic process

for part-whole inference needs to be augmented with algor-

ithms for both the automatic and manual application of

choice principles. These algorithms shall accomplish the

following. If P1 and P2 are processes serving as options

for Si and S2 respectively and P1 and P2 are competing for

an insufficient resource R, and there exists a stored choice

principle that states "anytime R is insufficient, the

scenario that requires more of R is less desireable, " and P2

requires more of R than PI, then the software will automat-

ical ly:

63

(a) cease to consider P2 in terms of R;

(b) find an option for $2 (Px) that requires less

(or none) of R;

(c) continue the analysis of S2 using Fx as an

option.

Similarly, if P1 and P2 are in temporal conflict and there

exists a stored choice principle that states "any process

that began before another process with which it is in

temporal conflict is more desireable" and P2 began after P1

then the software will automatically:

(e) cease to consider P2 in terms of its temporal

dependence on P1;

(f) find an option for S2 (Py) that is not in

temporal conflict with P1 (or can begin earlier

than PI);

(g) continue the analysis of S2 using Px as an

option.

If no stored choice principles exist, the software will

simply have to note the conflicts.

64

4.2.2.5. Propagation of Reports. The basic

part-whole inference process needs to be augmented with

specific algorithms to exploit intermixed description ty,'pes.

The algorithms shall accomplish the following. If ""a is the

achievement that exists before process Pa begins; Sab is the

achievement that exists after Pa ends but before process Fb

begins; and Pa and Pb are the only stages of process P

(i.e., P always occurs if Pa and Pb do), then the software

shall be able to infer at least any or all of the following:

(a) if Sa does not exist then Pa cannot have begun;

(b) if Pa has begun then Sa does (or did) exist;

(c) if Sab exists then Pa has ended;

(d) if Pb has begun then Sab does (or did) exist;

(e) if Sb exists then Pb (and consequently Sab, Fa,

and Sa) have all occurred;

(f) if Sb exists, then P has occurred;

(g) if F' has occurred, then all of Sa. Pa, Sab, F'b,

and Sb have all occurred.

65

4.3. Prototype System Overview.

The knowledge necessary to perform and analyze complex

scheduling must eventually be stored and maintained in a

structured tabular form for processing by the part-whole

inference engine. The process of developing this knowledge

base typically begins with narrative descriptions of the

project; proceeds to more structured textual descriptions

(e.g., outlines, pseudo-code); and concludes with an

admixture of structured tables (for use by the inference

engine) and related discursive explications (for the

convenience of the user). Such a progression requires the

support of a word processor, a text editor, and a database

system. And because the discursive information persists

even in the final knowledge base, all three are required

concurrently and continually throughout the scheduling

effort. While it may be possible to maintain the knowledge

base in three separate systems with appropriate interfaces,

our experience has been that a single system possessing the

combined functionality of all three is clearly called for.

Building upon earlier work [24. a Knowledge Dictionary

System was implemented for the purpose of creating, updat-

ing, maintaining and searching a scheduling knowledge base.

This system combines, in a single integrated environment,

66

functions of word processing, text editing, and database

management. The functionality of this system is described

in Appendix A of this report.

67

5. Scheduling Knowledge Base

The Phase I investigation was done with respect to an

e isting reference problem to provide an actual historic

particular basis in addition to a conceptual basis for the

investigation. The context of the reference problem

is the scheduling of the UTAIN/MAIS effort, information

about which was provided by the COTR. Within that context,

it was decided that the reference problem would be the

tracking of compatibility between the Operating System and

.the Network Software. This problem was chosen for several

reasons: it was sufficiently complex to test the power of

our approach; being purely technical, it did not require the

use of classified information; and, most impcrtantly,

since none of the providod information was of sufficient

depth, it is a subject with which we were sufficiently

familiar to be able to generate our own data.

This section is divided into four parts: the first iq a

parametric analysis of the issues involved with Operating

System (OS) software, the issues involved with Loco! Aro

Net (LAN) software, and their interrelationhips. The

second is the technical devet ommTent of a sompatiCi. it

matrig between the OS and LAN sofitware iQh c, , : the

reference problem, . The tnird is a scenaio' deEcriotion

,narrative! for that problem inr the conteit o-f the larger

62

social practice of scheduling. And the fourth in the

structured Social Practice Description as implemented in the

system.

69

5.1. OS/LAN Technical Issues. To understand the complex-

ities that arise in the scheduling problem as a result of

maintaining compatibility between the two major software

systems and their interfaces, it is first necessary to

understand something about each independently of the

other. This was accomplished during the investigation by

resorting to parametric analysis: i.e., identifying the

major technical issues of OS and LAN software respectively

and decomposing them into successively smaller issues until

the point is reached that each issue is a "parameter" in

that, by assigning it a value (either qualitative or

quantitative), one characterizes the system of which it is a

part as different in an important way from some other system

that had a different value for that parameter. This

parametric analysis is presented as Appendix B of this

report.

70

5.2. OS/LAN Compatibility Matrix. The compatibility

between the OS and the LAN software was developed as a

matrix with the vertical axis corresponding to the OS

parameters and the horizontal axis corresponding to the LAN

parameters. Compatibility is stated at multiple levels of

the part-whole hierarchy. Each statement is a relationship

name in brackets "[nameK]" that names the relationship that

the OS component must have with the LAN component. The

matrix, due to its size, is presented in "strips" and

pages. The strip number refers to the sequence, from left

to right, that the page would be placed if the matrix were

actually to be pasted together. The page number obviously

refers to the depth. The notation ">" in the horizontal

axis indicates that the column is above the following column

in the part-whole hierarchy. The part-whole depth in the

vertical axis is represented by paragraph numbering and

indenture. The matrix is provided as Appendix C of this

report to illustrate the type of compatibility problems that

must be dealt with in the course of scheduling.

The matrix is largely vacuous because it became apparent

early in its development that the ability to process such

matrices was critical to demonstrating feasibility. Hence,

a compatibility matrix inference engine was developed.

71

5.3. Structured Social Practice Description

As discussed earlier, a Social Practice Description is a

formal definition represented as tables. The social

practice of scheduling a large and complex local area

network is presented in Appendix D and is comprised of the

Social Practice Description (SPD) table, and the Element-

-Individual List (EIL).

72

5.4. Scheduling Scenario Description

What transforms a social practice into a scenario are the

actual facts (historical particulars) about an occurrence of

the social practice. The scenario used in the investigation

deals with the construction of a distributed data handling

system (DHS). The scenario involves a prime contractor

(TRW), a subcontractor for the hardware (IBM) and a subcon-

tractor for the network software (DEC). This framework

provides the context for two major types of contingencies:

(a) delays in the installation of the hardware lead to

eventual delays in the installation of the software after

several revised completion estimates are generated; and (b)

opportunities for mismatches between operating system and

network components require systematic analysis grounded in

the compatibility matrix. The scenario is formally present-

ed in Appendix E as a Fact Table and a Fact Type Table.

73

6. Future Research and Development.

The principal result of the Phase I effort was the design of

and confirmation of the practicality of developing a

Knowledqe Dictionary System for scheduling support. The

immediate goal is to actually implement that prototype as an

extension of the implementation used and partly developed in

Phase I. A stand-alone prototype for a Knowledge Dictionary

System capable of managing the knowledge necessary to

perform and analyze complex scheduling would provide a

foundation for both: (a) future research; extending the

problem domain beyond that of scheduling; and (b) future

development; engineering a maintainable and extensible

product that can be integrated with existing workstation,

network and mainframe environments.

6.1. Problem Domain Extensibility.

One important direction of future research is to exploit

the inherent generality of the SA technology upon which the

fnowledge Dictionary System is built; and to demonstrate its

applicability to problems other than scheduling.

6.1I.1. Decision Aid Framework. Scheduling, while

a significant problem in itself, is, on a larger scale,

merely an exemplar of the class of problems characterized by

74

the need to discriminate between what is actually happening

and that which was planned (or expected, or desired, etc.).

The two paradigmatic exemplars are: (a) control; altering

what is actually happening based upon what is desired, and

(b) forecasting; altering what is expected based upon what

is actually happening. Moreover, all of these fit the

even more general

value -> action -> value

framework of all human decision making. That is, actions

are undertaken in order to transform an existing state of

affairs into a new one of a desireable sort; or in order to

prevent the state of affairs from changing into a new one

of an undesirable sort. State of Affairs (SA) Technology,

upon which the Phase II KDS is modelled [25) [26) [27],

effectively represents this framework by recognizing that

decision making is concurrently both completely situation-

-dependent and completely principled [28).

6.1.2. Situation Dependencies. The choice of an

appropriate action requires at least: (a) knowledge of

"this" state of affairs; (b) knowledge of actions actually

available in "this" state of affairs including limitations

imposed by limited knowledge; and (c) knowledge of the value

(desirabilitv) of the "this" state of affairs and the

75

consequent state of affairs if any of the actions actuallY

available are taken. Because of this, deductive schemas for

going directly from observable facts to observable actions

to observable consequences are not available as rigorous

methods £29]. The distinction in SA between the elements

(abstract place-holders) of a process, and the histor-

ical, particular individuals eligible to be those elements

in a given "instance" of the process (the assignment

relation) effectively models situation dependencies.

6.1.3. Choice Principles. By contrast, it is

also (and concurrently) the case that choices are not

arbitrary. Instead, they exhibit the inherent rationality

of decision making as exemplified by abstract, context-

-free maxims [30] such as: (a) if a person wants to do

something, he has a reason to do it: (b) if a person has two

reasons for doing something, he has a stronger reason to do

it than if he had only one of those reasons (c) if a

person has a reason to do something, he will do it unless he

has a stronger reason to do something else instead; (d) if

the situation calls for a person to do something he cannot

do, he will do something he can do. These are all exemplars

of the completely general principle that "A person values

some states of affairs over others and acts accordingly"

(the value -> action -' value framework noted above). As

such, while SA descriptions do not prescribe which actual

76

choices to make in a given situation, they do operate as a

logical constraint on the possibilities of choices and thus

effectively model the rationality of choice making.

In summary, the goal of future research is to exploit the

general decision making framework inherent in the Knowledge

Dictionary System and to demonstrate its applicability

control applications and forecasting applications.

6.2. Product Engineering.

A prototype Knowledge Dictionary System for scheduling

support would provide a strong foundation for a maintainable

and extensible product that can be integrated with existing

workstation, network and mainframe environments. This

effort subdivides into two parallel but distinct efforts:

(a) software engineering; transitioning the prototype,

stand-alone software to a level of quality consistent with

that of viable commercial products; and (b) knowledge

engineering; developing archetypal knowledge bases for the

major scheduling paradigms found in those Government and

commercial enterprises targeted as potential customers.

6.2.1. Software Engineering. Given the antici-

pated functionality of a prototype Knowledge Dictionary

System for scheduling support, we expect there to be a

77

significant potential marketplace for a product of this

kind. But regardless of who the prospective customers may

be (these are discussed in the Section entitled Potential

Post Applications) the differences between a prototype and a

commercially viable product are significant in several

ways. As opposed to a prototype that is designed specific-

ally to demonstrate functionality, a commercial product is

designed to be: (a) supportable; the software must be

highly modular, well documented, and subjected to rigorous

systematic version and release control; (b) integrative;

the software must yield easily to coexistence with the

dominant operating system and database environments in the

marketplace; and literate; i.e., there must be a combina-

tion of user-oriented documentation and user-friendliness

sufficient to overcome the initial static friction so that

product acceptance can be obtained [31].

6.2.1.1. Support. The system used and

augmented during the Phase I investigation is already highly

modular and possesses a well-defined protocol for implement-

ing additional functions. It is highly amenable to being

subject to source code control since it is written in

Borland Pascal Version 4 which provides full support for

Units and for separate compilation. The principal effort in

this regard is the documentation of the source code (notably

sparse in the existing system).

78

6.2.1.2. Integration. As written, the

existing system and, hence, any prototype derived from it,

is well-behaved under MS-DOS 3." [-2] and should run in any

upward compatible environment such as OS/2 and any such

environment running as a task under another environment

(e.g., Unix. Novelle, Locus, etc.). To the extent that the

new environment provides additional services that must be

requested (e.g., lock management) the modification to

access these services system is minimal. The existing

system contains its own file service through which all I/O

requests of the command modules are processed. Finally, and

most importantly, the entire knowledge base is represented

as flat tables. By virtue of this, and in combination with

the internal file service, modifying the system to utilize

parts (or even all) of the knowledge base stored externally

in a relational database system is very straight forward.

6.2.1.3. Literacy. By far, the most dominant

effort in developing a product will be the preparation of

user manuals, tutorials and on-screen help as well. as the

refinement (or possibly redesign) of the user interface and

the addition of extra-system functions (i.e., access to

operating system functions from within the KDS).

79

6,2.2. Knowledge Engineering. As already

discussed as part of the technology that enables the KDS to

be effective, processes have paradigms (major variations).

This fact is no less true for the process of scheduling,

itself. Different organizations perform and analyze

complex scheduling in paradigmatically different ways. And

even within an organization, scheduling may be performed in

different ways according to the task. For example, a

defense contractor preparing a proposal is actually schedul-

ing (a) the proposal effort; (b) the effort being proposed;

and (c) the actual effort if the proposal is successful.

Each of these will almost always be done by different

individuals, and very possibly in different ways. Just as

general purpose accounting systems are often delivered with

a set of pre-defined or partially pre-defined charts of

accounts for different types of businesses (i.e., give

the user someplace to start); so do we envision that the

Phase III system will be delivered with a set of partially

pre-defined knowledge bases, each corresponding to one of

the major scheduling paradigms. This, too, will give the

user someplace to start; i.e., for each project with which

he is confronted, he will be able to copy the most appro-

priate paradigm and then particularize it to the specific

project. The effort to accomplish this requires: (a)

paradigm formulation; the analysis that leads to the

selection of the scheduling paradigms; and (b) paradigm

80

description; the development of representation units and

their elements that correspond to each paradigm.

6.2.2.1. Paradigm Formulation. Different

paradigms of scheduling are not merely arbitrary variations

of scheduling, but are, instead, fundamentally different

versions that are selected by a structured approach.

Typically, the fundamental difference that calls for another

paradigm is that the process in one version has a different

decomposition than in another (i.e., the parts and the

part-whole relations are different) making it exceedingly

complex to desc-ibe merely in terms of co-occurrence

constraints. Discovering paradigms will be accomplished by

Paradigm Case Formulation (PCF) C3] E043. The steps

in a PCF for scheduling would be to: !a) select an example

of a scheduling method (this is actually accomplished as a

result of Phase II in that the reference problem of a large

DoD project will serve as the exemplar) [5]; (b) hypothe-

size transformations of the parts and part-whole relation-

ships inherent in the paradigm case; (c) permute the

paradigm case by inducing the transformations; and (d)

select those permutations that are, themselves, both genuine

exemplars of scheduling and correspond to (or are applicable

to [71]) enterprises in the marI.stplace.

81

6.2.2.2. Paradigm Description. For each

selected scheduling paradigm, the knowledge necessary to

pervorm and manage that paradigm will be developed and

stored in the Knowledge Dictionary Seste_m a a , i...m t

ths l evel of Li1, and descendin rq nlI to leels below whm'

it would be necessary to particularize the description to a

given project. The means for constructing the knowledge

base have already been discussed at length elsewhere in this

proposal. An abbreviated example of the process descrip-

tions for a scheduling paradigm appears in Table 7 to

illustrate how the depth of description can be limited to

make the paradigm usable for a class of projects.

82

TABLE 3 - SCHEDULE PARADIGM (BPU)

-- 'RO7F'AFRSTTG-SS-mF'T--OS-- TYFE -, ELEMENT-- TS,
) -) 0 0 * t aO i n

C ' -I I - * * [User]
1 0 0 0 * * [Approval] *
1 f .) O * * [System] *
2 0 0E * * <Etecute> :

'. 0 0 * * [Contracts] *
2) 0 U]_ * * CSystem] *

2 1 0) * * <Decompose> *

1 i 0 * * [System] *
2 . i 0 * * [Subsystems] *
1 27 k * * Deve I op > *

C) 2 C * * [Subsystems] *
2) 0) * * [Integration] *

0 100 * Froc U re
2) C) 0 * * [Contracts] *

2 C) * * [Subsystems] *
0 0 C) 0 * * .Administer *
0 0 C) * * [Contracts] *
) C) C) * * [Subsystems] *

0 1 C * * *Review *
3) 0 * * [Requirements] *

3) I 0 * * [Subsystem] *
, o 2 C0 * * Review> *

3 0 2 C) , * [Concepts & Facilities] *3 2 C) * * [Subsystem] *
) 0 3) * * <Revi ew *

0 * * [Preliminary design] *
C) * * [Subsystem]

S0) 4 C) *<Review> *
0 4 0 * * [Detailed design] *
0 4 0 * * [Subsystem]

0 5 0 * * <Review
0 51* * [Subsystem] *

4 1 C C * * C)Accept >
4 0) C) C) * *[Subsystems] I*
4 C) 0 C) * * [Contractors] *
5 0 C) * * <Integrate'.
5 U 0 0 * [Subsystems]
5 0 Q) C * * [System]
6 C) C) C) * * Deliver>
6 0 0) * * [System]
6 :)) * * [User]
7 C) 0 0 * * Maintain
7 0 C C * * [System] *
-7 C))) * * [User] *

10 UU C) C:)] * * <Procure>** *
1 00 C) Pr C) Ur

*I[Contract]

8:

TABLE 3 - SCHEDULE PARADIGM (BPU) CONTINUED

--- PRO-,-F AR-rSTG-S TYPE, -ELEMENT -TS-100 0 * * [Task]:]

1001 0 11 1-0 200 * <Develop:.>
I(')0 (0) 1 C0 * * [RFP]
10o 0 1 0 * * :Task] I
100 0 2 C) * * - Submi t U b m-
1()(' 0 :) * * [RFP] ,
100 - A * * [Procurement)]
100 0 2 B 0 * * <Sbmi t :> *
100 0 2 B C) * * [DD254] ,
100 0 2 B 0 * * [Billet requests]
100 0 2 B 0 * * [Security] *
100 0 :) * * <Evaluate:> I
100 0 3 0 .* * [Proposals] ,
100) 3 0 * * [Task]
100 0 4 0 * * <.Recommend>. ,
100) 4 0 * * [Froposal] *
100 0 4 C) , * [Procurement] *
1 .) 0 5 0 * * <Assi st >',
1C)) 0 5 0 * * EProcurement]
lo(-) 0 5 0 * * [Contract:
100 C 5 0 * * [Negotiation] *
100 C) 6 C) * * <-A.: ccept >
100C) 0 6 C) , * [Contract]
100 0 6 01 *1 * [Procurement] ,200 0 0 01 *1 * <Develop . V

0 *1 V'EFFF
200 0 0 0 * . [Task] ,
200 0 1 0 * * <Prepare>..
200 0 1 * * [SOW] ,
200 0 1 0 * * [Task]
200 C) C * * <Prepare> ,
200 0 2 0 * * [Schedule] *
20C) 0 2 0 * * [Task] *
200 0 3 0 * * <Prepare :::
200 0 3 0 * * [Technical criteria]
200 0 3 0 * * :Task] ,
200C 0 4 0 * * <Prepare > ,
200 0 4 0 * * [Budget]
200 0 4 0 * * [Task] '
2)) 0 5 0 * * <Frepare:
200 0 5 0 * *[DD254] *
200 0 5 0 * * [Task],
200 0 6 0 * * <Prepare:
200 0 6 0 * * [Bidders list] ,
200 0 6 0 * * [Task]
200 0 7 0 * * <Prepare)
20C) 0 7 0 * * [Billet requests]
2o'1 01 7 10 * WETask] *
2C , 7 0 * *[BidderJ]

84

7. Potential Applications.

The principal result of the Phase I is a specification for a

fully functional, stand-alone prototype for a Knowledge

Dictionary System capable of managing the knowledge neces-

sary to perform and analyze complex scheduling associated

with large DoD projects. This result is immediately

applicable in both DoD agencies and in commercial organiza-

tions that engage in DoD contracting. Moreover, to the

extent that civil agencies of the Government employ a

similar scheduling paradigm, there would be the potential

for additional applications throughout the Government and in

private organizations that engage in Government

contracting. (NASA would clearly be of primary potential in

this regard.) Finally, as a result of future research and

development, the Knowledge Dictionary System would have

potential applications in both the Government and the

private sector; first, to scheduling problems employing a

wide variety of paradigms; secondly, to problems other than

scheduling, particularly control and forecasting problems,

and finally, as an integral part of large-scale data

handling systems directed at these problems that, to some

extent, are already in existence and have significant

inertia in both the operating and database environments.

7.1. Commercial Post Applications.

85

The Knowledge Dictionary System has the potential to be

commercially viable, both as a product and as a service. in

any private enterprise that engages the problems of schedul-

ing, control and forecasting at various levels of signifi-

cance.

7.1.1. Immediate Potential. The immediate

commercial value of the KDS is as a software product for

scheduling complex, DoD-like projects that would operate in

any PC or compatible environment. The immediate customer

base would be organizations that perform this scheduling as

an ancillary function to their principal line of business.

This would require the establishment of both the marketing

and support functions either internally or through the

organization funding the Phase III effort. For small

businesses or consultants, marketing would be accomplished

primarily through advertising and support would be of the

"hot-line" variety. For large DoD contractors, marketing

wo.Id be accomplished by on-site seminars and demonstra-

tions, and support would likely be provided as a separately

contracted service to develop the complete knowledge base on

a project by project basis.

7.1.2. Future Potential. As the problem domain

expands during future research efforts, the base of poten-

86

tial customers would expand to include organizations that

perform scheduling, control and forecasting. Most import-

antly, due to the increased sophistication of the product,

the base would now include organizations that perform these

functions as their principal line of business (e.g.,

financial planning, market research, investment brokers,

etc.). This latter group is of particular interest in that

they are not already consumers of commercial software and

thus represent a market segment in which there is yet little

or no competition E37]. For large organizations of this

type, there is an added opportunity to market the KDS in

concert with ongoing consulting services to develop and/or

evaluate new paradigms in the principal line of business.

This is equivalent to obtaining significant amounts of

private funding from a variety of commercial sources to

Support an ongoing research program. Moreover, as the

results of this research have very close parallels to

intelligence analysis (see below), this, in effect, is

an unusual case whereby the private sector would be funding

the development of technology for DoD.

7.2. Government Applications.

The Knowledge Dictionary System also has the potential to

serve the needs of the Government, and in particular, DoD.

Besides offering to the Government the same potential

87

applications already noted as commercial, in the DoD

environment there are additional applications, both immed-

iate and future, that on the sur-ace appear to be quite

different but, due to the SA technology that underlies the

KDS are, in fact, fundamentally similar.

The similarity lies in the fact that the KDS is not inher-

ently limited to just one world-view. For scheduling, only

one world-view is called for and the iK.'DS compares reported

activity and/or achievements with the world-view to infer

the disparity between what was planned and what is happen-

ing. For intelligence analysis, multiple world-views are

called for and the KDS compares reported activity with each

world-view to infer which is most consistent with what is

happening. I.e., the world-views serve as possible scenar-

ios as envisioned by the intelligence analyst; and the KDS

serves to notify him of which scenario appears to be

unfolding or, alternatively, that an anomalous scenario

unforseen by the analyst is unfolding and requires explana-

tion. This application is immediately applicable in any PC

compatible environment (e.g., the Zenith 248 Local Area

Network) and, as a result of product engineering, could be

integrated with larger systems already supporting substan-

tial databases.

88

8. References

[1]. McCarthy, J... "Generality in Artificial Intelligence,"
Communications of the ACM, Vol. 30, No. 12. (December 1987)
pp. 1030-1 035.

[2]. Ossorio, P.G.. Schneider, L.S., Proposal for a
Knowledge Dictionary System: Phase I, submitted to the
Small Business Innovation Research Program, Rome Air
Development Center, Griffiss AFB, NY, 1986.

[3]. Ossorio, P.G., "What Actually Happens": The Repre-
sentation of Real World Phenomena, University of South
Carolina Press, Columbia, SC, 1978.

£4]. PERT-based can and has been elaborated upon to deal
with additional complexities but is forever limited by its
foundation-level representation of a project. The fundamen-
tal concepts of representation that limit its ability to
describe schedule complexities include:

(a) a project can be represented as a two-dimensional
network of activities interrelated by time and
resource requirements;

(b) an achievement (milestone) within a project can only
be attained by completing the activities in the
network that precede it;

(c) the way in which one achievement is attained is
independent of the way in which other achievements
are attained;

(d) an activity invariably consumes specific resources
in known quantities;

(e) an activity invariably has other, specific activi-
ties as prerequisites;

(f) two (or more) activities that conflict in terms of a
given resource can only proceed if an additional
quantity of the resource is allocated;

(g) two (or more) activities that conflict temporall,
can only proceed if one or more of the activities
are re-scheduled;

89

(h) progress is the attainment of an achievement.

[5]. For example, the report that a unit test was succes-
sful may be made be made retroactively inaccurate at a high
frequency during integration testing while the acceptance of
a deliverable does not need to be reconfirmed very often.
When such is the case, inference based on simple backtracki-
ng (confirming all the lowest level milestones, then all
next level milestones, etc.) is so impractical that, in
complex schedules, either the inference will never be
complete or will be hopelessly outdated when it does.

[6]. For example, a report may indicate that all the
billets have been acquired and all the necessary contractor
personnel have been briefed, but the number of available
billets is insufficient for the number of contractor
personnel.

[7J. For example, a schedule may require that the design of
a message passing protocol for a network be started long
before the design of the lower-level but less complex token
passing protocol but that both designs are complete before
the Preliminary Design Review (PDR); and that the design of
the application datagram formats, while having a temporal
relationship with the other two for commencement, have no
such relationship for completion since they are not a
part of the PDR.

[83. For example, one report about the project might be
that the network is capable of managing distributed transac-
tions (a state of affairs report). Another might be that
the distributed transaction management software has been
successfully tested (an achievement report). And yet
another might be that the operating system is distributing
transactions among multiple servers (a process observa-
tion). Although all three reports are of a different
character, and may well have come from different sources at
different times, they are all reports of essentially the
same transformation of the project.

[9]. Using the prior example, the development of the
distributed transaction management software might obviously
be inferred to be a part of whole task of developing the
operating system. But if the operating system calls for
distributed transaction management as a reauirement, then it
must also be inferable that if the operating system is

90

developed, distributed transaction management will be a part

of that; and that achievement may well be a part of some

other schedule such as the development of the database

system.

[103. in fact, a major design goal of the prototype which

was successfully achieved was that all accesses to the State

of Affairs structure are "piped" through one common proce-
dure. While a degree of efficiency is sacrificed by

this architecture, the advantages cannot be overstated.

Integrating the State of Affairs System into either an

environment in which the State of Affairs Structure is
maintained in a centralized mainframe database; or one in

which that structure is maintained on one or more servers in

a distributed network; would require modification of less
than one percent of the existing code, and that would

encompass no more that a straight forward engineering

modi f i cation.

C113. The representation of date-time grcups in the

reasoning chain is essential to the efficiency c! the

process (it would literally be impossible to contiru! [
attempt to reconstruct everything from the atomic facts, and
represents the fact that some reports are highl. dur-b3]

while others are very transient.

[123. The question of "generalization" or "inheritance'

becomes very important at this point. Will it be the case
that, for example, an eligibility stated at Li will auto-

matically apply to any sub-context? Given the issues of
mere description versus classification versus appraisal such
a decision requires some thought. Note that the person

>maintaining the knowledge base and the person using to draw

conclusions may be different and one may be using the
generalization property to mean something different than the

other and this could lead to serious misinterpretations.

£13]. One can argue that while individuals do, in fact,

require global names for dealing with resource competition,
elements do not require a name outside the context of the

process in which they occur. However, in order to make an

historical assignment of an individual to an element, you
have to know in which process the assignment occurs. Thus

every element name will have to be tagged with the FPSO name
which necessarily makes element names unique. This will

become apparent in the discussion of the assignment rela-

tion.

91

[14). However, if co-occurrence constraints and eligibili-
ties become intermingled (e.g., a given eligibility only

applies if a given co-occurrence constraint is satisfied)
then a more complex structure for all eligibility con-
straints needs consideration. A general PROLOG-like rule
structure would probably work (and would be feasible given
that Borland Pascal Version 4.0 delivers on it's promise of
PASCAL-PROLOG linkable object modules) but would incur the
traditional inefficiencies of that approach.

[15). There are two objectives in conflict here. Literally
speaking, the "stages" of a process are sequential and, in a
schedule, a lot of attention is focused on stages because
that is where, in the process, that things come together
(perhaps this is a case of looking under the lamppost for
the lost key given the present limitations of scheduling
systems). But within a stage there is a great deal of
temporal complexity which, if not dealt with explicit-
ly, will cause conflicts due to cross-constraints to be lost
in the shuffle (i.e., they will appear simply as two or more
stages in different processes that are behind schedule
without any recognition that the reason they are behind is
that they are in competition with each other).

[16]. Gray, J.N., "Notes on Database Operating Systems", in
Operating Systems: An Advanced Course, vol. 60, Springer-
-Verlag, 1978, 393-481.

[17]. Note that it may also be the case that stages of a
process don't have any temporal dependence. E.g., both

stages have to occur in order for the process to occur but
either can occur at any time independently of the other.
Depending on the chosen solution, this may simply be a null
case that does not require any further analysis.

[18). And herein lies the hope that the process can be
recursive as previously discussed, although this may only be
the case if we do, in fact, view it as a queuing problem.

[19]. Of course, there must be some stages that have no
dependencies or the process can never start; and there can't
be any cycles in the description of the dependencies or the
process will simply stall (although dynamic cycles can
occur but more on that lIter).

92

[20]. Ossorio, P.G., Place, LRI Report No. .0a, LRI, Inc.,
Boulder CO. 1982.

[21]. At this point, the question really becomes one for
the user. If he finds it useful to develop a systematic
element naming system in LI, there's nothing to prevent his
doing that. If the element names are arbitrary except
in the context of a process, then that's fine too.

[22). This is why it was probably a good idea to model on
the process description since it can get considerably more
complex than the achievement description.

[2k]. Strictly speaking, we take it to be the case that any

paradigm of a process always has the same before and after
states of affairs; i.e., They are different versions of the
same p -ocess. On the other hand, it is often the case that
the reason for having two paradigms is that one will work
under a given set of conditions (i.e., state of affairs)
while another will not. Until we achieve further resolution
of this issue, we use the term "paradigm" to denote any
version of a process that has the same elements although
with possibly different eligibilities. Versions with
different elements are considered to be different proces-
ses. The intent is to focus on different decompositions of
the same process.

[24). Ossorio, P.G., Schneider, L.S., Final Technical
Report, Contract F-30602-85-C-0190, Rome Air Development
Center, Griffiss AFB, NY, 1987.

[25). More precisely, the Phase I KDS is modelled on a re-
stricted subset of SA that deals only with the concepts of
process and achievement, i.e., those concepts essential to
the problem domain of scheduling (actually, the subset of
that problem domain that we chose as the reference problem
of the Phase I investigation). In a system modelled on an
unrestricted SA the articulation of the concept of reality
is accomplished by reference to the four basic consti-
tuents, namely, "object," "process," "event," and "state of
affairs," and their further development. Note that these
are not invented technical terms. Rather! they are already
straight-forwardly concepts of reality or the real world. A
primary and paradigmatic use of these concepts is as the
categories of "what there is." Also, and by no means
unrelated, the four concepts are observation concepts - we
observe exemplars of each kind. The fact that our separate

93

observations can be formulated as observations of a single
world; i.e., the real world, requires that there be logical
relationships among the concepts in terms of which our
observations are made and our world described. These are
expressed as a set of transition rules.

[26]. The transition rules for an unrestricted SA system
are:

Ti) A state of affairs is a totality of related
objects and/or processes and/or events and/or
states of affairs.

T2) A process (or object or event or state of
affairs) is a state of affairs which is a
constituent of some other state of affairs.

T3) An object is a state of affairs having other,
related objects as immediate constituents (an
object divides into smaller, related objects).

T4) A process is a sequential change from one state
of affairs to another.

T5) A process is a state of affairs having other,
related processes as immediate constituents (a
process divides into related, sequential
or parallel, smaller processes.

T6) An event is a direct change from one state of
affairs to another.

T7) An event is a state of affairs having two
states of affairs as constituents (i.e.,
"before" and "after").

TB) That a given state of affairs has a given rela-
tionship to a second state of affairs is a
state of affairs.

T9) That a given object, process, event, or state
of affairs is of a aiven kind is a state of
affairs.

TIO That an object or process begins is an event
and that it ends is a different event.

T11) That an object or process occurs (begins and
ends) is a state of affairs having three states
of affairs as constituents (i.e.., "before.,"
"during," and "after").

94

[27]. The limiting cases for an unrestricted SA system are:

LI) The state of affairs which includes all other
states of affairs (i.e., a world view).

L2) An object that has no constituents, hence is an

ultimate particle (i.e., a stubbed-off object
definition).

L3) A process that has no constituents, hence no
beginning that is distinct from its end (i.e.,
an event).

L4) An event that has no constituents, hence the
equivalent of an object during a period during
which the object undergoes no change (i.e., a
timeless state of affairs).

1281. Ossorio, P.G., Schneider, L.S., Decisions and
Decision Aids, LRI Report No. :.1, Linguistic Research
Institute, Boulder CO, 1982.

[29]. To be sure, we sometimes employ logical or mathemat-
ical algorithms as definitions of actions, but only after
the prior decision has been made that in "this" situation
(or this kind) such a schema is relevant. Blindly following
a formula which says "Whenever X do Y" where X and Y are
concrete descriptions of facts and actions (e.g., Whenever
you're outnumbered, retreat.) is a prescription for disas-
ter, for such a formula will have genuine value only under
extremely limited conditions and cannot provide a general
basis for decision making.

1301. Op. cit. Place.

[31]. This is, perhaps, the most critical issue to be
addressed. Notably successful products have, in general,
been introduced with a plethora of manuals. tutorials,
menu-driven interface options, and on-screen help functions,
most of which are ignored by the user soon after installa-
tion; but without which the user would never have even
attempted to try the product. And this is especially
true for extremely powerful systems due to their necessarily
inherent complexity. WordPerfect (SSI Software), the most
widely used word processing software in PC environments, is
a paradigmatic case in point. By contrast, TK!Solver

95

(Software Arts, Inc.) may be the most powerful spreadsheet
program ever developed but was notorious as a product
outside of a very select community of engineers.

[32]. The only exception to this is screen I/O, which is
discussed in the Section entitled Installation, and which
would only be potentially problematic at the level of
individual work:stations.

333]. Ossorio, P.G., "Conceptual-Notational Devices," in
Davis, K.E. (Ed.), Advances in Descriptive Psycholoqy
(Vol. 1, pp. 83-104), JAI Press, Greenwich, CT, 1981.

1343. The formal definition of PCF is inductive as follows.

PCF1 ::= I. Introduce a Paradigm Case of X.
II. Introduce transformations of the Paradigm

Case.

PCF I. PCF,.
II. Ti. The number of Paradigm Cases are K >

1.
T2. The Paradigm Case is a generator of

X.
T3. The Transformation of a Paradigm Case

is a Paradigm Case.
T4. A Transformation may be any func-

tional equivalent thereof.

[35]. While the choice of a paradigm case is conceptually
arbitrary, in practice it will make a difference and
sometimes a crucial difference. The choice of the reference
problem as the paradigm case was made in accordance with the
following rules of thumb developed through experience with
PCF. The first is that the paradigm case be the most
complex case so that the transformations are also simplifi-
cations. The second is that the paradigm case be indubit-
able. I.e., if ever there were a case of a scheduling
problem' that's one' The final rule is that the paradigm
case be in some relevant sense a primary or archetypal
case. This gives formal recognition to the fact that the
other cases generated are cases because of their relation
via the transformations to the paradigm case; and, hence the
transformations serve as explanations of why the paradigms
are different.

36

136]. The effort is not an investigation to discover new

ways to perform scheduling. However, by virtue of using

PCF, the effort potentially has this benefit as a side-ef-
fect. it is possible that PCF will yield a scheduling

paradigm that, while exhibiting very desireable charac-

teristics and applicability, does not appear to be in use by

anyone. PCF is analogous to a Zwicki Morphological Analysis
in this regard.

137]. While they may employ commercially available systems

to support these as internal functions ancillary to their
line of business, whatever software they use in support of
their product (e.g., a stock market forecast) is typically
developed in-house and preciously guarded. Since the KDS is
particularized by the content of the knowledge base, not by

the software, such organizations could obtain the many

benefits of KDS without compromising proprietary know-
ledge.

97

A Knowledge Dictionary System for Scheduling Support

P.G. Ossorio and L.S. Schneider

Appendix A

Submitted by
Linguistic Research Institute, Inc.
5600 Arapahoe Avenue
Boulder, Colorado 80303

Submitted to
Rome Air Development Center
Griffiss AFB, New York

96

TABLE OF CONTENTS

1. Prototype System Overview ,2

2. User Interface Environment 104

Files 106

4. Windows1E

5. Transactions 110

6. Relations 113

7. Queries 115

8. Scan 119

9. JSpaces I1

10. Engines 124

11. Miscellaneous Commands 1

12. Macro Commands 142

99

13. InstalI ation . 143

14. References 144

1 (:)0

LIST OF EXHIBITS

FIGURE 1 - TYP'ICAL SCREEN.................129

FIGURE 2 - FULLDOWN MENUS.................129

10C'1

1. Prototype System Overview.

The knowledge necessary to perform and analyze complex

scheduling must eventually be stored and maintained in a

structured tabular form for processing by the part-whole

inference engine. The process of developing this tnowledge

base typically begins with narrative descriptions of the

project; proceeds to more structured textual descriptions

(e.g., outlines, pseudo-code); and concludes with an

admixture of structured tables (for use by the inference

engine) and related discursive explications (for the

convenience of the user). Such a progression requires the

support of a word processor, a text editor, and a database

system. And because the discursive information persists

even in the final knowledge base, all three are required

concurrently and continually throughout the scheduling

effort. While it may be possible to maintain the knowledge

base in three separate systems with appropriate interfaces,

our experience has been that a single system possessing the

combined functionality of all three is clearly called for.

Building upon earlier work [11, a Knowledge Dictionary

System was implemented for the purpose of creating, updat-

ing, maintaining and searching a scheduling knowledge base.

This system combines, in a single integrated environment.,

functions of word processing, text editing, and database

1 :2

management. The functionality of this system is as follows.

103

2. User Interface Environment.

The user is typically presented with a screen such as

illustrated in Figure 1. The first line is referred to

throughout as either the Status Line or Command Line.

Underneath the Command Line is the Menu Bar, and beneath

that are two windows of data. The Status Line conveys

information about the currently active window. In the

illustration, this indicates that Window 1 is opened to a

file called KSC\DATA\INSTAL which is 255 characters wide and

contains 124 rows (the remainder of the information on the

Status Line is explained subsequently). The Menu Bar is an

array of headings, each of which correspond to an object

upon which the system can operate. These objects are Scans,

Queries, Transactions, Windows, Files, and Relations. The

functions of which the system is capable can be accessed in

any of three ways.

2.1. Menu Bar. The menu bar represents the major

functions that can be executed by the user. The menu bar is

activated by F1O and the submenus are selected either by

positioning with the arrow keys and pressing CR or by typing

the capitalized letter of the selection. ESC backs out of

any menu selection and a second ESC deactivates the menu

bar. For example, typing F10, moving the cursor across the

File heading, pressing CR, moving the cursor down to the

104

Quit selection and pressing CR again will yield a prompt on

the Command line ..tX Exit (Y/N)?" Typing a "y" will exit

the system. The same function can be accessed by typing

Fi, F (for File), Q (for quit). Not all of the available

functions are accessible from the menu system. The submenus

are illustrated in Figure 2.

2.2. Control Keys. Every available function of the

system is accessible via special keys (e.g., arrow keys.

tab, etc.) and one or two key sequences of control charac-

ters. In the above example, note that the prompt was

preceded by "K.X" which is the control key sequence for the

Quit function. I.e., holding down the Ctrl key, type kx and

the same prompt will appear.

2.3. Macro Commands. Any combination of commands and

responses to prompts can be invoked from the keyboard. A

Macro Command is an ASCII file of a sequence of keystrokes

and referred to by the name of the file in which the

keystrokes are stored. A Macro Command is executed by

typing F9 (which returns the prompt "Execute File:") fol-

lowed by the file name and CR. This will cause the system

to respond sequentially to each character in the file as if

it had been typed from the keyboard.

1c'5

3. Files.

A file is a data stream which can be viewed or modified

through a window. Files are oF three types: Tables, Text

(a table with one column), and Documents (a "table" with no

columns). To both the system and the user all types are

pretty much the same except some functions behave differ-

ently for each type and not all functions are applicable to

all types. The operations that can be performed with files

are as follows.

3.1. Open File. A file can be OPENed in a window. This

makes the file visible to the user and available for

searching or updating.

3.2. Close File. A file can be CLOSEd, i.e., made

invisible and unavailable for searching or updating.

3.3. Read File. Internally, files are maintained in a

unique structure to facilitate the various operations of the

system. But if the user has a standard ASCII file (e.g.,

produced by another program) it can be read in its entirety

into the system and converted.

3.4. Write File. A user can also WRITE an entire file in

standard ASCII format.

1 (:36

3.5. Top File. This positions the cursor to the first

character of the first row of the file.

3.6. Bottom File. This positions the cursor to the last

character of the last row of the file.

3.7. Synchronize File. Unlike typical word processors or

text editors, the system does not read the entire file into

RAM for processing. It, instead, employs a caching scheme

whereby only the data most needed is resident in memory.

Unless the user takes advantage of Transaction Management

(see below) it is advisable to periodically SYNCHronize the

file; i.e., force all changes to be recorded on the disk;

just as one would periodically save a file when using a text

editor.

3.8. Quit. This is a quick shutdown function to synchro-

nize and close all opened files and exit to the operating

system.

107

4. Windows.

Windows are viewing areas on the screen consisting of 1 or

more display lines. New or empty windows are attached to

temporary files called TEMP1 TEMP24 etc. and will remain so

until the window or file is closed (if the user wants to

save a temporary file, the system will prompt him for a

permanent name). The operations that can be performed with

windows are as follows.

4.1. Select Window. To operate on data in a window it

must be SELECTed, i.e., made the current window. The cursor

appears in only the current window and the Status Line

always refers to the current window.

4.2. Open Window. A new window can be OPENed, i.e., made

to appear on the screen. The user must always specify how

many rows the window will contain (its length) and which

existing window it will overlay. A window can be opened

directly to a file or it can be opened empty in which case

the user must specify how wide (in characters) the window

should be.

4.3. Close Window. An existing window can be CLOSEd

(removed from the screen). If the window is opened to a

user file, the file will be closed automatically. If the

10 8

window is opened to a non-empty temporary file, the user

will be prompted for a file name if he wants that file

saved.

4.4. Clear Window. Clearing a window is identical to

closing it except that the window will remain on the screen

attached to an empty temporary file.

4.5. Link Window. A window can be linked to the same

file to which an existing window is already opened for the

purpose of having two or more areas of the file visible at

the same time. Changes made to the file from any of the

windows will appear in all of the other windows (immed-

iately, if the viewing area overlaps).

109

5. Transactions.

Changes to the data may. at the users option, be governed by

a transaction management protocol. A transaction is a

sequence of changes that are: atomic; i.e., either they all

occur or none of them do and durable; i.e., once made, they

can only be changed by another transaction.

5.1. Begin Transaction. BEGIN starts a transaction. It

has the effect of establishing an opening parentheses in an

equation in that everything within the parentheses will be

treated as an atomic unit. When a transaction is begun, the

status line will be augmented to indicate the number of rows

that have been changed since the transaction began (Log) and

the remaining capacity of the log, in rows, to absorb

further changes (once a row has been changed, further

changes to it do not require additional log capacity).

5.2. Commit Transaction. COMMIT ends a transaction

favorably; i.e., it has the effect of establishing the

closing parentheses and then performing all the changes that

occurred within the parentheses by applying the changes to

'-e disk.

5.3. Abort Transaction. ABORT ends a transaction

unfavorably; i.e., it has the effect of establishing the

110

closing parentheses and then undoing all the changes that

occurred within the parentheses by restoring the disk to the

way it was before the transaction began.

5.4. Enter Transaction. If a transaction has begun in

one window, the user may desire to have changes in another

window be a part of that transaction (i.e., they will have

the same destiny as that transaction when it ends). This is

accomplished by entering the transaction.

5.5. Leave Transaction. Once a transaction has been

entered, the user may desire that the fate of the changes in

a window not be the same as that of the transaction. This

is accomplished by leaving the transaction.

5.6. Share Transaction. If two or more windows are open

to the same file (or in a multi-user environment, two or

more users have a window open to the same file) the user who

begins the transaction can designate that the transaction be

shared. I.e., the file will appear in all windows as if the

transaction were going to be committed.

5.7. Exclusive Transaction. By contrast to a shared

transaction, this option provides that other windows open to

the file will see it as it was before the transaction began

111

no rows in the file that have already been accessed by the

transaction can be changed until the transaction ends.

5.8. Scan Transaction. This function allows the creation

of a scan (see below) of all rows that have been changed

since the transaction began. (If a row has been deleted, it

will not be included in the scan even though it will be

un-deleted if the transaction is aborted.)

112

6. Relations.

Relations (tables) are the common format in which all files

are viewed. A relation consists of zero or more columns,

each having a unique name within the file (Documents, i.e..

tables with zero columns, do not have column names and

cannot be the object of functions that require column

names).

6.1. Create Relation. New relations can be CREATEd. To

do so, the user responds to the prompt "Header:" by typing

dashes (-) followed by the column name followed by more

dashes and a vertical bar (1) as the column separator. The

dashes are optional as in the following example:

---- Name---- ------- Address ---------- AREA!-ZIP-:

6.2. Align Column(s). The data in the columns can be

re-ALIGNed - either left, right or centered.

6.3. Sort by Column(s). The rows can be SORTed according

to the value of one or more columns.

6.4. Add Column(s). A new column can be ADDed TO a rela-

tion. The system will prompt for the name of the column

113

after which the new column(s) is to be added and then prompt

for the header which is specified in the same way as for

creating a relation.

6.5. Drop Column(s). An existing column can be DROPped

FROM a relation.

6.6. Change Column. An existing column can be CHANGEd.

The system will prompt for a new header as in adding a

column. The new header may be smaller or larger in width

than the old one.

6.7. Switch Columns. Two existing columns may be

positionally interchanged.

6.6. Unique. This command removes adjacent rows from a

relation that have identical values for the specified

columns. In response to the "Unique:" prompt the user types

columnl column2... .columnN. Specifying "s" in re-ornse to

the "Options:" prompt will cause the table to be sorted on

those columns before the command is executed.

114

7. Quer i es.

Queri es (searches) may be executed by a user upon a f i 1 e.

The results of a query may be represented by: positioning

the tables in the windows (the default); creating a scan; or

writing to another window. All query types involve matching

of expressions to values and the following wild-card syntax

is supported: "\" matches any single character; "\#"

matches any single digit; "*" matches any string of

characters; "\$" matches any string of digits; and "\\"

matches "V'. Furthermore, all query types support the

following "Options:"

"a" - locate all occurrences (the default is to

locate just the first or next occurrence)

o - output the results (the system will prompt

for the window number)

"s" - include the results in a scan

"I ex'ecute the search immediately (the

default is to wait for an explicit coilmand

to begin)

115

" ignore case (the default is case sensi-

tive)

"w - whole word matches only, i.e., the

matching value must be delimited at both

ends (e.g., by space, comma, period,

etc.).

Once a query has been defined it may be re-executed using

either the NEXT entry on the menu or the Ctri-L key r23.

7.1. Find. FIND locates occurrences of a specified Value

anywhere in a file. In response to the prompt "Find:" the

user types the pattern followed by CR.

7.2. Replace. REPLACE locates occurrences of a specified

value anywhere in a file and replaces it with a specified

value. In response to the prompt "Find:" the user types the

pattern followed by CR. Then, in response to the prompt

"Replace with:" the user types the value to be substituted

and CR. There is an additional option unique to the Replace

command. The option "n" indicates to perform the replace-

ment without confirmation by the user. The default is to

ask the user for each occurrence whether to perform the

replacement or not.

116

7.3. Keyword. KEYWORD locates the conjunction of

specified values in the same row anywhere in the file. In

response to the prompt "Keyword:" the user types valuel &

value2 &...& valueN.

7.4. Select. SELECT locates rows whose column values

match a specified value. In response to the prompt "Sel-

ect:" the user types columnl = valuel & colLmn2 = value2

&...& columnN = valueN.

7.5. Project. PROJECT takes all the rows from a table

but only the specified columns and writes them to another

window. The "a" and "o" options are both default and

mandatory. In response to the prompt "Project:" the user

types column1, column2,...,colLmnN.

7.6. Join. JOIN concatenates two tables based on

matching values in the specified columns of each. In

response to the "Join:" prompt the user types A.columnl =

B.columnl & A.column2 = B.column2 & ... where A denotes

the number of the window to be joined to B which is the

current window.

7.7. Union. UNION combines two tables of the identical

format into a single table. The "a" and "o" options are

default and cannot be overridden. In response to the prompt

117

"Union:" the user types the window number containing the

tables to be unionized with the table in the current window

[3].

7.8. Difference. DIFFERENCE searches two tables of

identical format for rows that are based on not matching

values in the specified columns of each (i.e., a row in

either table qualifies if there is no row in the other table

that has equal values in the specified columns). In

response to the "Difference:" prompt the user types

A.columnl # B.columnl & A.column2 # B.column2 & ... where A

denotes the number of the window to be compared to B which

is the current window E43.

7.9. Next. NEXT re-executes the currently defined query.

7.10. Clear. CLEAR clears the definition of the

currently defined query.

118

8. Scan.

A scan is a subset of a table. It can be produced by a

query, an engine, or the user. A scan is also persistent;

i.e., the scan is not lost when a file is closed. Only one

scan per table is presently supported. When a scan exists,

those rows that are included in the scan are displayed in

highlighted text on the screen. Scans can be created in any

type of file including Documents. In this capacity, it

similar to the "block" commands found in word processors but

is slightly more flexible in that while a "block" must be

contiguous, a scan can include any lines scattered through-

out the file.

6.1. Include. A user can manually INCLUDE the current

row (the row the cursor is on) in a scan.

6.2. Exclude. A user can manually EXCLUDE the current

row from a scan.

6.3. Begin/End. A user can manually include a contiguous

set of rows in a scan by Beginning a scan at the current

row, moving the cursor to some subseqtLuent row, and ENDing

the scan. This will include all the rows, inclusively,

between the begin and end commands in the scan. Once a

119

BEGIN command is issued, an "S" will appear on the Status

Line until the END command is issued.

8.4. Clear. A user can CLEAR a scan; i.e., exclude all

the rows from the scan.

8.5. Read. A user can READ a scan from another window

into the current window. If the scan to be read is from a

table, the current window must either be a table of ident-

ical format or empty.

6.6. Write. A user can WRITE a scan in the current

window to another window. If the current window is a table.

the destination window must be a table of identical format

or empty.

8.7. Next/Prior. A user can position the cursor at the

NEXT or PRIOR row of a scan.

8.8. Delete. A user can DELETE a scan in its entirety

from the table in the current window.

8.9. Move. A user can MOVE a scan in the current window

to another place in the file. All the rows in the scan,

whether contiguous or not, will be deleted from their

12

present position and inserted contiguously at the new

position somewhere else in the table.

8.10. Copy. A user can COPY a scan in the current

window to another place in the file. All the rows in the

scan, whether contiguous or not, will be inserted contigu-

ously at the specified position in the file.

121

98 JSpaces.

Judgement Spaces are "inferential indexes" through which

queries may, at the user's option, be resolved; i.e., the

"matching" of expressions is not done by lexical analysis,

but by locating values that are close together in a multi-

-dimensional factor space based on user judgments. A JSpace

is created from a table whose columns represent a set of

user-selected variables and whose rows correspond to the

rating of rows (or a sample of rows) from an existing table

against each variable [53.

9.1. Create. A user can create a JSpace index. In

response to the prompt "Create Index:" type the name of the

table that contains the user judgements. if no name is

specified (i.e., typing <CR> in response), the system will

create an ordinary lexical index. In response to the prompt

"Length:" the user types the size, in characters, of the

terms (keys) in the current window to be indexed. If no

length is specified (i.e., typing <CR> in response), the

system will use the length of the row as the default. Note

that, unlike the query commands, there is no reference to

column names. The progress of JSpace creation is displayed

on the status line.

12)

9.2. Remove. A user can remove a previously created

JSpace by typing its name in response to the prompt "Remove

Index:". If no name is specified, the default lexical index

is removed.

9.3. Open. A user can open a JSpace by typing its name

in response to the prompt "Open Index:". If no name is

specified the default index will be opened. This means that

all matching done by queries and engines will be done via

the open JSpace. While a JSpace is open, "IX:jspname"

appears on the status line.

9.4. Close. A user can close a JSpace by typing "Y" or

"y" in response to the prompt "Close Index: (Y/N)?"

9.5. Sync. A user can cause an index to be synchronized

by typing a "Y" or "y" in response to the prompt "Synch-

ronize Index (Y/N)?" This causes any changes to the index

that have yet to be made asynchronously to occur immediate-

ly. Synchronization is not permitted during a transaction.

123

1t;a Engines.

Inference engines are, in effect, very complex qLeries;

complex principally in the fact that they cannot be quanti-

fied. I.e., unlike relational queries for which the

criteria can be specified in advance, the criterion is

dynamic and self-modifying as the query proceeds E63. The

system has only one such engine presently implemented, the

CLOSURE engine, but several more are anticipated as a result

of the Phase I investigation and will be briefly described

as if they existed [7].

10.1. Closure. The Closure engine takes one row of

single table and produces the closure [83 of that table

based upon two or more columns and constant values. While

Closure will accept any table as input, it is only sensible

when the table denotes a part-whole relationship such as a

work breakdown in which one column represents the Task Name

and the other represents the Subtask Name and the Subtask

also appears somewhere else in the table as another Task

with its own Subtasks ad infinitum. In this case, Closure

can either list all of the Subtasks (and their Subtasks,

etc.) required for a Task, or for a given Subtas., list all

the Tasks (and Tasks of which those are Subtasks, etc.) of

which it could be a Subtask. In response to the prompt

"Closure:" the user types A.columnl = A.column2 & A.column.

124

= A.column4 & ... & A.columnK = A.columnJ where A denotes

either the number of the current window or, optionally on

the right side of the equal sign, a backslash "\". The

option "o" is default and cannot be overridden. The result

is obtained by writing the current row to the destination

window and then, iteratively: (a) joining the current row of

the destination window with the current window based on the

column matches; (b) appending the rows in the current window

that qualify to the table in the destination window; and (c)

joining the next row in the destination window as in (a).

This process continues until there is no next row in the

destination window. Expressions of the type A.columnK =

\.valueK are interpreted to mean that, in addition to the

column matches specified, column K must have value K. The

table in the destination window is appended with a column

with the header of which indicates the level in the

part-whole hierarchy at which result occurs.

10.2. Match. The Match engine produces a .oin

between a specified table and the lowest (or highest)

level subset of a Closure for which the join is non-empty.

Using the Task/Subtask relation and a table that relates

Tasks and Task Managers, Match produces a table of all the

lowest (or highest) level Managers that must approve a

change fo a specific Subtask.

125

10.3, Part-Whole. The Part-Whole engine performs a

Closure and Match for every entry in a part-whole relation

at a specified level (or set of levels or all levels).

Given the Task/Subtask relation and a table relating some

subset of the Tasks and their Status (e.g., completed,

in-work, etc.) the Part-Whole engine produces a table of

every Task in the project and its status (the status of some

Tasks may not be inferable based on limited information).

1.0.4. Deviance. The Deviance engine performs a

difference between a specified table and either a Match or a

Part-Whole. Given the Task/Subtask relation and the Status

table above and a table relating each Task with its sched-

uled Status, the Deviance engine produces the list of Tasks

that are at variance with the schedule.

10.5. Temporal. The Temporal engine takes a speci-

fied table (or subset of it) and produces a table that

represents a "wait-for" graph. While it can be applied

to any table, it is only sensible if the table denotes

a precedence relationship such as a table relating a Task

and its Status to another Task and its Status in which the

first [Task, Status] is only possible when the second [Task,

Status] is true (Status can be any combination of columns

including numerical data). Given such a table, the Temporal

126

engine will produce a table listing each Task, the Tasks it

is waiting for, the Tasks those are waiting for, etc.

10.6. Resource. The Resource engine takes a speci-

fied table (or subset of it) and produces a table that

represents a queue. While it ,-an be applied to any table,

it is only sensible if the table denotes a consumption

relationship such as a table relating a Task and its

Status to a quantity of a resource in which the [Task,

Status] is only possible when the quantity of the resource

is available (Status can be any combination of columns

including numerical data). Given such a table, the Resource

engine will produce a table listing each Resource, the Tasks

waiting for that resource, the Tasks waiting for those Tasks

because they need that resource too, etc.

10.7. Begin. Begin prompts the user to select an

engine, specify the parameters for that engine, and starts

the engine processing.

10.8. End. End stops an engine and clears its

parameters.

10.9. Checkpoint. Checkpoints suspends an engine and

causes it to write a record of all parameters it requires to

resume processing from where it left off.

127

Restart. Restart prompts the user to select an

engine which was checlk-pointed, and caUSes the ergine to read

its restart record and resuIme processing.

FIGURE 1 - TYPICAL SCREEN

j1jKSC\DATA\INSTAL,255,124 A I S . TX Log:) Cap:13'4 ?*

Scan Query JSpace Transact Window File Relation Engine

ItBE-NUM AT INSTALLATION NAME 1CC--ADD-
'52O-0C)017 30111 DURNBURG RR AND HIWAY RIVER BRIDGE lEG 1400
0520-00086 36130 IHOHEN DAM IEG 140)0
0520-00086 3013 I HOHEN HIWAY BRIDGE EG 1400
0520-00263 90404 IBAD LANGENGALIZA MUNITION STOR DEPOTJEG 1400

I2 -BE-NUM- DESCRIPTION
.520-00017 MAJOR RIVER CROSSING CONSISTS OF TWIN RR AND HIWAY

BRIDGES WITH HIWAY BRIDGE OVER RR BRIDGE. HIWAY
BRIDGE IS FOURLANE. RR BRIDGE IS TWO TRACK. THREEI
SPAN CONCRETE ABUTTED CONSTRUCTION WITH LARGE CON- I
CRETE PILINGS IN RIVER. FOUR (4) ZSU-57-2 REVETTEDI
EMPLACEMENTS AT WEST END OF BRIDGE AND SIX (6) ZSU-I
57-2 REVETTMENTS AT EAST END.

0520-00086 HYDROELECTRIC DAM, STEEL REINFORCED CONCRETE CON-

STRUCTION WITH TWO TURBINE SLUICEWAYS IN CENTER OF
DAM. STEEL-GATED SPILLWAY AT EAST END. FOUR LANE
HIWAY ON CREST OF DAM. EIGHT (8) ZSU-23-4 HARDENEDI
REVETMENTS AT EAST END AND TWELVE (12) ZSU-57-2
HARDENED REVETMENTS AT WEST END.

0520-00086 FOUR LANE CONCRETE ROAD ON CREST OF HOHEN DAM WITH

WIDE TURN-OUTS AT EITHER END.AREA IS HEAVILY DEF-

FIGURE 2 - PULLDOWN MENUS

II TEMP1,127,I IX:JS1 A I S ** TX Log:0 Cap:1394 **

Scan Query JSpace Transact Window File Relation Engine

Incl Find Create Begin Selec Ope Crea Closure
eXcl Repla Remove Commit Open Cloe aLig Match
Begi Keywo Open Abort Close Rea Sort Part-Whole
End Selec Close Enter clear Wrie Add Deviance
cLea Proje Sync Leave Link Top Drop Precedence
Read Join Share Boto cHan Consumption
Next Union eXclusive Syn sWit Begin
Prio Differencel Scan Uniq End
Dele Closure checkpoint
Move Next reStart
Copy Clear
Writ

129

11. Miscellaneous Commands.

All of the commands that can be executed via the pulldown

menus may also be executed by a one or two key control

sequence. There are many additional commands that can only

be executed by a control key sequence. The following is the

complete command set currently implemented.

11.1. One Key Commands. These are the commands

accessed by holding the CTRL key down while typing a single

character or pressing one of the specially designated keys

(e.g., TAB) on the keyboard.

B or Shift-Tab: Tab to the previous column of a table or a

previous position in a document. If the

system is in Auto-Tab mode (an "A"

appears on the Status Line), the cursor

will position under the first non-blank

character in the previous row.

-C or PgDn: Page Down; i.e., move down the file one

window length.

"D or Rt Arrow: Cursor Right; i.e., move the cursor right

one character.

130

"E or Up Arrow: Cursor Up; i.e.. move the cursor up the

file one row.

-"G or Del: Delete Right Character; i.e., delete the

character under the cursor and shift all

the remaining characters after the

cursor left one position.

..H or BS: Delete Left Character; i.e., delete the

character to the left of the cursor and

shift all the remaining characters after

the cursor left one position.

-.I or Tab: Tab to the next column of a table or the

next position in a document. If the

system is in Auto-Tab mode (an "A" appears

on the Status Line), the cursor will

position under the first non-blank

character in the previous row.

-"J or Home/End: Beginning/End of Row.

Prefix to the set of two key commands that

begin with "4... K. It is not necessary to

hold the CTRL key down for the second

character.

131

L: Repeat Last Query; i.e... execute the

currently defined query in the current

window again. See the endnote on query

processing for a more complete description

of how the "L command operates.

"M or CR: New Row; i.e., insert a new blank row

between the row the cursor is on and the

following row. Characters to the right of

the cursor, if any, will be deleted from

the current row and moved to the new row

automatically.

N: Insert Row; i.e., similar to CR except

that no characters will We deleted from

the current row and the new row will be

empty.

*0: Prefix to the set of two key commands that

begin with "0. It is not necessary to

hold the CTRL key down for the second

character.

.'P: Insert Control Character, i.e., in order

to place a control character in the data

132

(e.g.q a printer command, type Ctrl-P

and the ne.t character will be interpreted

as a control character. This is not

necessary for macros. The macro command

processor interprets any upper case letter

as a control character and anything else

as itself.

Prefix to the set of two key commands that

begin with .. It is not necessary to

hold the CTRL key down for the second

character.

"R or PgUp: Window Up; i.e., move backward in the file

one window length.

-S or Left Arrow: Cursor Left; i.e., move the cursor to the

left one character position.

."U: Abort Any Command in Progress. While

typing on the Command Line, the system

will act as if the command had never been

started. If the command (e.q., a search)

is already in progress, the system will

stop processing at the first occasion in

which everything is properly synchronized.

V or Ins: Toggle Inset/Typeover Mode; i.e., in

Typeover Mode the character typed will

replace the character under the cursor;

in Insert mode (an "I" appears on the

Status Line) the character typed will be

inserted under the cursor and all charac-

ters to the right of the cursor will be

shifted right one character position.

Scroll Window Up; i.e., move the window

backward one row in the file.

"X or Down Arrow: Cursor Down; i.e., move the cursor to the

nex.t row in the file.

Delete Row; i.e., remove the row the

cursor is on from the file.

Z: Scroll Window Down; i.e., move the window

forward one row in the file.

11.2. 'K Prefix Commands. These are the commands

accessed after typing Ctrl-K'. It is not necessary to hold

the CTRL key down when typing the second letter of the

1:4

command. It will always be interpreted as a control

character.

-KB: Begin Scan (previously described).

."KC: Copy Scan (previously described).

.ME: Exclude Row from Scan (previously de-

scribed).

"KG Read Scan (previously described).

...KH: Clear Scan (previously described).

.KI: Include Row in Scan (previously de-

scribed).

.. KK End Scan (previously described;'.

...KL: Prior Row in Scan (previously described).

.... N: Next Row in Scan (previously described).

...KO: Open File in Window (previously de-

scribed).

135

KF': Write Scan to Window (previously de-

scribed).

Read ASCII Text File (previously de-

scribed).

'KT: Define Tab Width; i.e., set the number of

character positions to tab in a document

when not in Auto-Tab mode.

• "KU: Abort Command (same as "U).

--KV: Move Scan (previously described).

-'KW: Write ASCII Text File (previously de-

scribed).

* KX: Quit and Exit System (previously de-

scribed).

• "KY: Delete Scan (previously described).

...KZ: Close File (previously described).

11.3. '0 Prefix Commands. These are the commands

accessed after typing Ctrl-O. It is not necessary to hold

136

the CTRL key down when typing the second letter of the

command. It will always be interpreted as a control

character.

...OA: Abort Transaction (previously described).

• "OB: Begin Transaction (previously described).

* OC: Commit Transaction (previously described).

' OD: Leave Transaction (previously described).

'OE: Enter Transaction (previously described).

",OG: Select Window (previously described).

01: Tab to Next Column (previously described).

• OJ: Link Window (previously described).

..... : Change Case; i.e., if the character under

the cursor is lower case it will be

changed to upper case and conversely.

.....OL: Center Text; i.e., center the text under

the cursor in the column.

137

"ON: Include Transaction in Scan (previously

described).

"00: Open Window (previously described).

"OS: Share Transaction (previously described).

.OU: Abort Command (same as U).

"OW: Select Window Up; i.e., make the window

above the current window the new current

window.

"OX: Exclusive Transaction (previously de-

scribed).

S"OY: Close Window (previously described).

"OZ: Select Window Down; i.e., make the window

below the current window the new current

window.

....^01...09: Select Window i...9 (previously de-

scribed).

138

11.4. "Q Prefix Commands. These are the commands

accessed after typing Ctrl-Q. It is not necessary to hold

the CTRL key down when typing the second letter of the

command. It will always be interpreted as a control

character.

...QA: Find and Replace (previously described).

.-QC: Position at Bottom of File (previously

described).

* 'QD or End: Position at End of Row (previously

described).

"-QE: Clear Window (previously described).

OF: Find String (previously described).

...QG: Add Column (previously described).

...H: Change Column (previously described).

""QI: Toggle Auto-Tab Mode; i.e., if Auto-Tab

Mode is on (an "A" is on the Status Line)

then turn it off. If it's off, then turn

it on.

139

Align Column (previously described).

"K: Drop Column (previously described).

"'QL: Keyword Search (previously described).

^ON: Select (previously described).

"QO: Join (previously described).

^M.P: Project (previously described).

"QQ: Clear Query (previously described).

MR: Position at Top of File (previously de-

scribed).

"Ws: Position at Beginning of Row (previously

described).

"QT: Switch Columns (previously described).

QU: Abort Command (same as "U).

"QV: Sort Relation (previously described).

140

^QW: Unique (previously described).

-"-QY:Delete to End of Row; i.e... delete ali

data to the right of the cursor.

-'QZ:Closure (previously described).

141

12, Macro Commands.

There is a very primitive macro processor which is activated

by F9. It does not allow any parameter substitution but

merely processes the contents of the file as a series of

I:eystrokes. To create a macro, simply type the sequence of

keystrokes as an ASCII text file using capital letters to

represent control characters. This can be done from within

the system by using the Write File command to create an

ASCII file.

142

13. Installation.

13.1. The system requires a PC or 100% compatible

with MSDOS -..x or higher. Most of the popular video boards

(Mono, CGA, Hercules, Paradise, EGA) are supported but the

system does direct video output so it expects screen memory

to be at $B8C)0 for color or $B000 for monochrome.

13.2. The system will operate with as little as 256K

but some functions will fail due to a lack of dynamic

memory. It is fully functional at 384K but will make use

all available memory up to 640K for buffer caching.

13.3. The system doesn't care much about directory

structure and it supports path names including .. \ notation.

However, the files TT.EXE and EDITERR.MSG must be in the

same directory and that directory must be included in

the MSDOS PATH specification. The current working directory

is the default directory for all files unless a path name is

specified. User file names may not have extensions as the

system assigns its own extensions (.DEF, .DES, .TXT, and

• IX#).

143

14. References.

Ell. Ossorio, P.G.. Schneider, L.S., Final Technical
Report, Contract F-30602-85-C-0190. Rome Air Development
Center, Griffiss AFB, NY, 1987.

[2]. Queries execute off a stack which is particularly
important to know when executing joins. A join is specified
by an expression such as 1.TASK = 2. TASK. This defines a
join on window #2 such that the top row in window #2
will have its TASK equal to whatever the TASK is on the
current row (the row the cursor is on) in Window #1.
However, the synchronization is not continual but only
occurs when a "L is executed in Window #1. For example, if a
Select is defined in Window #1, then each time a *".L is
executed, the next row qualified by the Select Expression is
found, and the Join from Window #2 to Window #1 is re-exe-
cuted. But it is not necessary that any query be defined in
Window #1. A -"L will always cause the stack to execute.
I.e., as long as the join is defined, you can simply
position the cursor in Window #1 and issue a -L command
and Window #2 will be repositioned. Furthermore, the stack
can be of any practical depth such as joining #2 to #1, #3
to #2 and #4 to #3 and #5 to #3. This creates a tree of
joins with #1 as the root. Henceforth, any- t-me a -'L is
issued in Window #1, #2 will be repositioned. Then, because
#3 is joined to #2, it will be repositioned, etc., until all
the joins in the stack have been executed (except circular
joins, which will only execute once).

[33. As of this writing, the UNION command does not work
properly and is still undergoing tests. However, a Union
can be accomplished by creating a Scan of all the rows in
one table and then reading that scan into the other table.
See the paragraph on Scans below.

[4]. As of this writing the Difference command is not
working properly and is still undergoing tests. However, it
can be accomplished by performing a Join using the "s"
(scan) option, and then deleting the scan and writing what
is left to another window. I.e., only the rows that did not
join will remain which is the desired result (this must be
done Linder transaction management or the original table will
be corrupted.)

144

[5]. The knowledge structure that comprises JSpaces is
that of a Factor Space. In contrast to lexically-based
technologies, factor spaces provide a psychometrically based
indexing method that bypasses the usual limitations of
word-shape or mutually exclusive indexing categories. This
is achieved by the construction of a multi-dimensional space
in which each dimension represents a significant variable
that discriminates among, for example, resources in the
project (skills, computer systems, dollars, individual
persons, etc.); and each is represented by a vector of
coordinates that locate it, geometrically, in the factor
space. This allows, for example, the resources necessary
for a process to be retrieved according to the principle
that resources located closer to each other in the factor
space are more similar to each other in terms of the
factors comprising the space.

In the problem domain of scheduling, factor spaces might be
constructed to represent, at least: (a) attributional
similarity among resources as above; (b) transformational
similarity among paradigms; (c) part-whole similarity
among processes and achievements; and (d) achievement
similarity between processes and process similarity between
achievements. In all cases, the general procedure that a
user would employ to construct a factor space is as fol-
lows: (1) Select a set of variables that jointly discrim-
inate within the problem domain the representation units or
elements thereof; (2) Select a sample of the representation
units among which discriminations will have to be made
(e.g., vocabulary terms, paradigm case descriptions, consti-
tuent and/or process definitions); (3) Create a table
(matrix) of the sample with respect to the variables and
record judgments about the relevance of each sample item to
each variable (this can be qualitative such as "highly
relevant" or quantitative on a numeric scale); (4) Invoke a
statistical process provided within the system to analyze
the correlations among the variables (this eliminates
commonalties among the variables and creates a set of
orthogonal axes that form a space with the required geomet-
ric properties); (5) Have the system scan all of the
representation units (or elements thereof) in the domain of
interest and assign to each a vector of coordinates repre-
senting its location in the factor space; (6) Henceforth,
when desired, request the system to assign coordinates
to a hypothetical representation unit or element thereof
(i.e., a request for one that is needed but may or may not
be present) and to retrieve whatever units do exist in the
order of their distance from the coordinates of the request.

The normal operational cycle of a factor space is then
roughly as follows: new representation units or elements
thereof are created by the user; these are scanned by the

145

system and assigned a coordinate vector in the factor space

based upon how it relates to others already located in the
space; the user or the part-whole inference engine interro-
gates the fActor space for a list of representation units or
elements that are relevant to a needed representation unit
or element; and the factor space is monitored by the system
for unrelated or indistinguishable representation units so
that the analyst can periodically add or remove variables.

Factor space indexing provides several unique fzatures.
Indexing would be accomplished automatically, relieving the
user of the tedium of systematically coding the represen-
tation units and elements. Also, representation units and
elements would be retrieved by the system on the basis of
the user's judgments about content, freeing him from
adhering solely to searches based on the lexically struc-
tured query and inference engine capabilities already
proposed. Finally, representation units and elements would
be, at the user's option, retrieved in order of relevance
(as opposed to simply "qualified" or "unqualified") provid-
ing a formal basis for estimating the degree of relevance
between the planned schedule and what is actually occurring,
hence, the degree of confidence that a project is or isn't
proceeding according to plan (and the reasons for that
conclusion).

[6]. Formally such "queries" are considered to be beyond
the power of first-order logic in that the quantification of
the result after i iterations is dependent on the result of
iteration (i - 1). In this sense, they are motivated
(fueled) by the results produced along the way (and,
perhaps, this is one justification for referring to them as
"engines").

[7). The technical requirements of these are described in
the other sections of this report. They are redescribed
here from a user's perspective. In the technical discus-
sions, however, they are referred to as extensions to a
single inference engine. Experience with the Phase I proto-
type, however, suggests that from a user's standpoint, a
modular implementation of several engines is advantageous in
two regards: (a) it retains the closed nature of the system
in that every operation produces an object (table, scan,
etc.) that can be manipulated by all the other functions of
the system; and (b) a user has the flexibility to combine
the engines in a number of ways. some of which may not be
obvious even to the system designers.

146

[8]. Given a relation R(......B,...) having two
attributes over a common domain, it is then possible to have

joins of indefinite length: R [A=B] R [A=B] R [A=B]... and

in the general case the topological structure defined on

the tubles of R is a digraph. We can invent a notation

within relational algebra such that R"[A=B] means R [A=B] R

... [A=B] R where R occurs n times. But there is no way to

allow this to occur an indefinite number of times within

relational algebra. We define the Closure operator
RF [,A,B] as follows where K is a key of R, and A and B are
attributes or lists of attributes having the same domain:

R-[K,A,B] is the set of all tuples <KK 1 ,n> where
there is a join sequence on A=B of length exactly n.

The Closure operator combines with other operators of
relational algebra in such a way that it may ocCur on any

semantic loop definable within the schema (e.g., upon a
projection of a compound expression formed of Joins'. It

has great import for part-whole relations such as determin-
ing the lowest common superior of a set of elements of a
hierarchy, or the highest discriminants. For example, in

the following hierarchy, the commonality between Algeria and

Uganda is Africa, and the highest discriminants are (North

Africa., East Africa).

1. Africa

1.1. North Africa

1.1.0.1. Mediterranean

1. 1.0.1.i. Algeria

1.1.0.1.2. Libya

1.1.0.2. Atlantic

1.1.0.3. Interior
1.2. West Africa

1.3. South Africa

1.4. East Africa
1.4.0. 1. Kenya

1.4.0.2. Uganda

1.4.0.3. Tanzania

Where the structure is a lattice rather than just a hier-
archy, closure can determine the common inferior and its

di scriminants.

147

A Knowledge Dictionary System for Scheduling Support

P.G. Ossorio and L.S. Schneider

Appendix B

Submitted by
Linguistic Research Institute, Inc.
5600 Arapahoe Avenue
Boulder, Colorado 80303

Submitted to
Rome Air Development Center
Griffiss AFB, New York

148

TABLE OF CONTENTS

1. OS/LAN Compatibility 15

2. Operating System Software 151

2.1. Process 151

2. Memory• 158

2. . Context 164

2.4. Files 165

2.5. IPC 184

3. LAN System Software 187

3.1. Server 189

3.2. Service 196

75-3. Address 199

37.4. Transaction204

4. References219

149

OS/LAN Compatibility.

Operating System (OS) software and Local Area Net (LAN)

software must be compatible for an implementation to work

correctly. A parametric analysis of each of these and their

interface topology is developed and explained; and a

possible compatibility matrix is suggested.

150

2. Operating System Software.

The Operating System (OS) software traditionally provides

the interface between the system hardware and the most

immediate user of that hardware; typically a programmer.

The possibility of "end users" in the traditional sense

being users of the OS is not considered in this analysis [1]

and the term "user" consistently denotes a program or

programmer throughout this discussion. The issue of whether

the LAN software is an OS user is considered in another

section. The principle conceptual entities dealt with by an

OS are processes, memory, context, files and inter-process

communication (IPC). Its purpose is to issue instructions

to the Central Processing Unit (CPU) to implement and manage

these entities.

2.1. Process. To the OS, a process consists of

a sequence of instructions (code) and data over which the

instructions operate. Such a collection is typically stored

as a file and does not acquire the status of a process until

the OS has re' .ived a request from another process to

execute that file. The problem of an infinite regression of

processes is solved by what is known as a "bootstrap"

program; i.e., a program whose name is encoded within the OS

as the first process to commence after the OS is loaded and

initialized [2]. the issues related to processes are

151

initiation, execution, and location of both the code and

data segments.

2.1.1. Initiate. The ways in which processes can

be initiated by the OS are legitimate parameters for

describing its behavior. An OS must, of course, have at

least some way to initiate a process; and most have sev-

eral. The principal variants are as follows.

2.1.1.1. Spawned. A process can be "spawned"

by another process; i.e., can be converted from the file in

which it resides into a process waiting for execution.

Every OS must have at least this capability.

2.1.1.2. Forked. A somewhat more advanced way

of initiating a process is by a "fork." In this case, a

process that is already running recreates itself as another

process waiting for execution. This is most common tech-

nique in multi-user systems, particularly for the shell or

command line interpreter. Every time a new user logs into

the system, the shell reinstantiates itself as another

process to serve that user and continues executing until

that user logs out.

2.1.1.3. Primed. In performance intensive

systems with many users logging in and out at very high

152

frequencies (e.g., a system serving Automated Teller

Machines) a technique called "priming" is employed.

In this case. due to the overhead involved in forking, a

process forks repeatedly at initialization, creating a

specified number of "primed" processes that wait for users

and do not terminate when the user logs out, but merely

reinitialize and wait for another user. Frimed processes do

not terminate until their termination is requested expli-

citly by another process.

2.1.2. Execute. The way in which processes are

executed after initiation is also characterizes the behavior

of the OS. It is possible, but unusual, for an OS to have

more than one way of controlling process execution.

2.1.2.1. Dedicated. "Dedicated" execution is

the environment in which whatever process is executing has

the attention of the OS for as long as it wishes, exclusive

of any other processes. In this environment, the only

disruption of a process is a hardware interrupt or trap that

causes the program counter to be reset to a value stored in

a predefined memory location associated with that hardware

interrupt line. Such vectors are almost always to code in

the OS (e.g., to service a disk drive during data transfer)

although nothing prevents a process from changing these

vectors. Dedicated execution is predominant among extremely

153

simple, single-user systems, few of which remain in exist-

ence today.

2.1.2.2. Sliced. "Sliced" or time-slicing was

the first and simplest approach to multi-user servicing. In

this approach, the OS associates a rundown timer with each

process in execution and sets that timer to an equal or

apportioned "slice" of time (e.g., lOOms). Then, every time

the OS gets control via a hardware interrupt, it updates the

timer based on a real-time clock and, if it finds that the

value of the timer is 0 or negative, instead of returning

control to the interrupted process, it returns control to

the next process and resets the timer for the interrupted

process. Sliced execution is only found today in either

very dated systems (due to its simplicity), or in very

modern super-computers (due to its speed).

2.1.2.3. Priority Interrupt . By far the

most common form of execution control, the "priority

interrupt" approach utilizes special hardware interrupts

found in almost all modern CPU's to accomplish time slic-

ing. Each process is assigned to a frequency interrupt

register according to its priority over other processes.

The hardware continually generates interrupts for each

register and thus both enables the OS to get control at

specified intervals and is able to stack interrupts accord-

154

ing to priority when an interrupt is generated during the

processing of another interrupt. This allows the OS to take

maximum advantage of "idle" time (time in which a process is

waiting, e.g., for a disk transfer) in allocating it to

processes that are ready to resume execution.

2.1.2.4. Stacked. "Stacked" execution is

found today only in extremely high-end mainframes, although

the technology is by no means new. The stacked approach

achieves advantage over the interrupt approach in much the

same way that primed processes do over forked processes.

The OS determinem ahead of time which processes are to

execute and how frequently (including itself) and pushes all

the information onto a hardware stack. Then, every time an

interrupt is generated, the hardware itself pops the

information necessary to activate the process off the stack

and relinquishes control to that process. In this approach,

the OS is not a privileged process, but has the same status

as all other processes. Its ability to control the system

derives only from the fact that it is the first process to

execute and thus can initialize the stack to prioritize its

own execution.

2.1.3. Code Segment. The way in which the OS

manages the code segment of a process is a characteristic of

155

importance, particularly with respect to performance. Most

systems support some admixture of the following.

2.1.3.1. Duplicate. Duplicating the code

segment for every instantiation of the process is the

oldest, simplest, but still the fastest approach. The

code does not have to be re-entrant E33 and there is

little to do when switching from one process to another (see

Context below). It is expensive in terms of memory, which

was a prime motivator for developing the other approaches,

but is resurgent today as memory costs have fallen through

the floor.

2.1.3.2. Single re-entrant. In this approach,

there is only one copy of the code segment in memory,

regardless of how many processes are instantiated from it.

Ano, not surprisingly, this technique predominates in

contemporary systems with limited memory. The price paid

is, of course, that an enormous amount of information must

be saved when the process is interrupted, and the same

information retrieved when the process restarts, all of

which ta,:es time and is referred to as "context switching"

(see below).

2.1.3.3. Duplicate re-entrant. This environ-

ment is found, again, mostly in high-end mainframes. It is

156

an attempt to gain the advantages of both duplicate and

re-entrant execution in a way that makes optimum use of the

system. The OS monitors how frequently each code segment is

being referenced by different processes, and optionally

generates duplicate code segments as needed or collapses

duplicate code segments into a single segment as demand de-

creases. Generating new duplicates is very easy and very

fast, which is ideal in that the need to do so occurs when

the workload is increasing very rapidly. Collapsing dupli-

cates is difficult and slow, but that is of little conse-

quence since the need to do so is prompted by the fact that

the system workload has become very relaxed.

2.1.4. Data Segment. Managing the data segment of

a process is also characteristic of an OS but is also highly

correlated with the way in which the code segment is

managed.

2.1.4.1. Process-bound. In this approach, all

data is bound to the process, and only indirectly referenced

by the code segment. This approach is required if code

segments are allowed to be completely re-entrant. The

principle advantage is in the insulation among users that is

obtained. The code segment knows nothing about multiple

users and each process for which it executes has the

illusion of being the only process that exists. The

157

elegance is paid for in terms of the high degree of indirec-

tion (with its attendant performance cost) necessary to

access data.

2.1.4.2. Code-bound. In this approach, some

or all of the data may be allowed to be directly bound to

the code segment at the user's option (or as may be determ-

ined by an optimizing compiler). This provides for having

only one copy of constant and global data, while maintaining

seperate copies of only those variables that are process-

-dependent. A primary exemplar of a process requiring

code-bound data is a database management system. It is

absurd to think of duplicating (and, hence, maintaining

consistency among) all the data dictionary and data defini-

tion variables when only a handful of variables (e.g., the

query) are specific to the process. In fact, in systems

that do not allow code-bound data (e.g., Unix), implementers

of database systems have without exception utilized files or

raw I/O (see below) to bypass the OS.

2.2. Memory. Memory is the major asset of the hardware

that must be managed by the OS. Memory, as used here,

denotes only that store directly addressable by the CPU in

the context of executing a CPU instruction. It does not

include any extended stores such as RAM under control of a

Memory Management Unit (MMU) unless the MMU is invisible to

158

the OS (which is not often). Any data residing in other

than memory can be thought of as being on a disk or equival-

ent storage mechanism that requires extensive effort (and

time) before it is accessible to the CPU.

2.2.1. Real. The real memory is the RAM that is

electronically connected to the CPU memory bus and can be

directly accessed by specifying an address to the CPU. As

far as the OS is concerned, it is the fastest and only such

memory [4]. The principal characteristic of an OS regarding

the management of real memory is how the OS presents that

memory to the user. To some extent, the presentation

reflects the actual hardware organization, but this is

purely a convenience to the OS (and a burden to the LIser)

and is never a logical requirement. An, OS is alway,

in principle, capable of mapping the hardware memorf organi-

zation to whatever presentation it desires; its just easier

not to.

2.2.1.1. Linear. The simplest presentation of

memory to the user is that of a linear sequence of bytes,

starting at C) and ending at the highest number of bytes in

the system. When the hardware actually uses such a struc-

ture (e.g., the Motorola 68000 series CPU) the OS will

almost always present it that way to the user, even if the

OS was ported from another CPU that did not use a linear

159

audress space. When the underlying structure is other than

linear and the OS presents it as linear, the OS will almost

always impose a limit on the address space available to the

user that, in some way, reflects the non-linear structure.

That's why we always have machines with megabytes of RAM on

which the largest program cannot exceed 64k.

2.2.1.2. Segmented. A segmented presentation

is always the most difficult for the user and, if the

hardware memory is segmented, the easiest for the OS.

Segmented memory is a linear memory that does not allow

linear addressing, but instead requires a structured address

such as <bank, page, paragraph> in which each of the

components is modulo. The user has no choice as to where

his memory begins and ends, but it is the users responsi-

bility to check for page boundaries. E.g., on an 80X86 CPU,

the address of the byte that follows 00FF:OFFF:F is

0 100: 0000: 00.

2.2.1.3. Paged. A paged presentation is a

segmented presentation except that the user always sees

pages as if they belonged to him. I.e., he will always own

(as he sees it) byte 0 of every page he has, even if that

begins in the middle of a hardware page. He thus requests

memory in terms of pages and allocates his data in accord-

16O

ance with the page structure he requested and the OS takes

care of mapping those addresses to the hardware addresses.

2.2.1.4. Protected. Memory protection is a

hardware feature that applies to any memory presentation and

augments that presentation to serve not only as the mode of

addressing, but also as a boundary outside of which any

access attempt will trigger a specially designated hardware

interrupt if the system is operating in what is called "user

mode." What happens as a result of the interrupt is up to

the OS, but almost always is a process termination. No

process running in user mode can change the mode register

because it is outside the users memory. But when the system

powers up, it is in "system mode" by default so tte OS

process begins in system mode and has access to all memory

including the mode register. Thus the last instruction the

OS executes before activating another process is to put the

system in user-mode and all hardware interrupts automatic-

ally return in system-mode.

2.2.2. Virtual. Virtual memory refers to memory

that appears to the user as if it were real memory; i.e., he

can treat it in the same way as real memory and, in fact,

does not even need to distinguish between the two unless he

is concerned about performance. The way in which the OS

implements virtual memory is one of the most critical

161

characteristics of its performance and its integrity. By

definition, virtual memory is much larger than real memory.

and the principle problem that confronts the OS is how to

map the virtual space to the real space and how and when to

act on that mapping.

2.2.2.1. Swap. The oldest and simplest

approach to virtual memory is called "swapping." In this

approach, the OS generates a load map for a process when it

is instantiated; i.e., the set of real memory locations that

the process will use whenever it is active. The map is

stable and does not change from one activation to another.

Henceforth, when a process is activated whose load map

intersects the load map of another (or several) inactive

process, all of the memory associated with the inactive

process is written to disk and the location of that informa-

tion on the disk is noted in the load map for that process.

Then, the load map for the about to be activated process is

interrogated and its disk-based memory image is read into

memory according to the load map. To minimize complexity,

most systems that employ swapping also set a fixed size

limitation on processes so that only one process will have

to be swapped for each process that is swapped in. This is

I nown as Multiple Fixed Tasks (MFT) management.

162

2.2.2.2. Demand Paging. Unlike swapping,

demand paging does not swap on a process basis, but on a

memory page basis only when necessary. Nothing at all is

done when a process is activated. It is only when an active

process actually makes a request to access a part of its

address space that is not in real memory (called a page

fault) that an action is taken. The action is to swap out

the hardware memory page regardless of its mapping to

processes, and replace it with the image of that page as

the process last saw it. Moreover, as there is no reference

to processes, any hardware page can be selected for swapping

and the memory map for the process will be altered accord-

ingly (i.e., multiple references to the same virtual

address may reference different real addresses). Demand

paging is typically done according to some strategy (e.g..

least recently used or least frequently used) that dynamic-

ally avoids "thrashing;" e.g., two pages that reference each

other competing for the same real page.

2.2.2.3. Explicit Paging. Explicit Paging is

usually provided either as in extension to demand paging, or

when no automatic swapp ng of any kind is provided. An

exemplar of the latter case is the use of overlays; i.e.,

segments of code structured by the programmer in a non-con-

flicting way and explicitly declared by the programmer to

reside in the same real men -y segment. In the former case,

163

explicit paging is offered to the user for one of two

purposes: (a) to lock a process into memory so that it will

not get swapped out, even if it is not very active (e.g., a

primed process that is waiting for a user); or (b) to force

all pages of a process to be swapped out if any one of the

pages are swapped out (e.g., if the user knows a priori that

he has two very large processes, neither of which can do

anything unless all its pages are resident).

2.3. Context. Given that an OS provides for re-entrant

code and process-bound data, the combination of the singular

code segment and the data segment associated with one of

many processes is called a "context" and a context has to be

created, maintained and terminated.

2.3.1. Create. Context creation refers to

building what amounts to a process description, including

place holders for all the information necessary to record

the state of the process when the process is interrupted. A

process description will typically include references to:

the code segment, the data segment, the stack, the stack

pointer, all opened files and their interface blocks, and

both the real and virtual memory maps.

2.3.2. Switch. Context switching refers to a fOur

stage process that is probably the single most expensive

164

function (in terms of the percentaoe jf total available CPU

time consumed.) performed by an OS. First, the entire state

of the current context is recorded in the process descrip-

tion and the description and any (or all if the system uses

swap management) of the processes memory pages so indicated

are synchronized to stable store. Next, the OS restores its

own context from its last synchronization point including

swapping in any indicated memory pages and commences its own

processing. Thirdly, its entire state is recorded and the

description and any of its memory pages so indicated are

synchronized to stable store. Finally, the next user

context is restored from its last synchronization point and

it's execution is commenced [5].

2.3.3. Exit. The termination of a process is

considerably more complex than merely erasing the evidence

of its existence. To the extent that the process has

acquired resources (see below), those resources must be

accounted for, released, and made available to other waiting

processes, not the least of which is the OS itself. It is

upon process termination that the OS performs most of its

scheduling and dequeuing functions.

2.4. Files. In modern OS terminology, a file refers to

any data stream stored on, sent to or received from anything

other than real memory; i.e., files include all the data

165

within the system and in other systems to which the system

has access. They are the major asset of the software that

the OS must manage.

2.4.1. Data. Data files represent only those

types of files that were traditionally called files. These

are structured user data (e.g., the files of a database),

text (e.g., program source code), and other data that is

maintained by user programs. The three primary character-

istics that distinguish among OS with respect to files are

format, access method and versioning.

2.4.1.1. Formats. The file format refers to

the format in which the OS presents the file to the user.

It is most often the case that this is also the way in which

the OS formats the file on the hardware. However, this is

not a requirement and many OS perform some mapping on behalf

of the user to hide many of the complexities of internal

structure. In the latter case, it is extremely important

for the user to understand these complexities at least to

the extent that they impact performance. Most OS offer more

than one format, allowing declaration by the user at file

creation.

2.4.1.1.1. Stream. A stream format is

one in which the bytes of the file are sequential and are

166

accessible in order beginning with byte Cd. The internal

representation of a stream is either very similar (except

that it deals with the complexities of segmentation) or is

"linked." In the latter case, the bytes within a page are

sequential but the pages are asequential and the ordering is

maintained as a sequential list of pages [61.

2.4.1.1.2. Text. A text format is a

stream in which are embedded certain control characters that

enable sequential access in ways other than on a byte by

byte basis. The most common is the ':CR/LF. (carriage

return, line feed) pair. When this is present, the file is

accessible one "line" at a time where line denotes all the

bytes up to and including the next :CR/LF. It is possible

to embed additional control sequences although this is most

often left to the user (e.g., a word processing system will

insert control characters for paragraphs. pages, headings,

etc.).

2.4.1.1.3. Paged. A paged format is one

in which the unit of addressability is larger than a byte,

and is so not merely by the presence of control characters

as in a text format, but by the imposition of structure.

The implementation of a page format requires that a page

"size" either defined or default be declared for the file

167

when it is created. It is then accessible on a page by

page basis.

2.4.1.1.4. Structured. StruCtUred files

are identical to paged files at the top-most level, but

allow the subdivision of pages into complex components

called "fields" which may consist of other fields. The

structure must be declared when the file is created. It is

then accessible on a page.field.field. .. field basis.

2.4.1.2. Access Methods. The access method

refers to the means by which components of a file can be

accessed. The access method is obviously not independent of

the format inasmuch as the format determines what components

exist. It is independent of the format in terms of how

components are accessed and modified.

2.4.1.2.1. Sequential. The simplest

access method is sequential. I.e., component N only becomes

accessible immediately after access to component N-1 has

occurred, and the first access will always be to the first

component if the file is opened for read or read/write, or

after the last component if the file is opened for append.

Most of the simpler OS access streams and text files in this

manner, maintaining a pointer to the location in the file at

which the next access will occur, and setting flags for the

168

mt.. m mOmO mm

user when certain conditions are true (e.g., End of File.

End of Line, etc.).

2.4.1.2.2. Direct. Direct access allows

any component of a file to be accessed directly by the

invocation of a "seek" function. The parameters to the seek

function include the component's position, relative to the

first component. The effect of the seek function is to set

the file pointer to the end of the preceding component so

that the next sequential fetch will obtain the desired

component. Internally, the seek function may be implemented

as a loop of sequential accesses or the OS may implement a

structure on top of the file (e.g., a page map) to support

direct reads at the expense of more costly adds and deletes

(because the page map requires updating whenever a component

is added or deleted).

2.4.1.2.3. Indexed. Indexed access

augments direct access to support component addressing by

value. I.e., the user does not have to specify to relative

position of the component, but merely its contents (or a

range of contents). Most OS implement indexed access based

on the definition of a "key" component; i.e., within the

page, a field (if the format is structured) or a range of

byte positions and it is this component and only this

component that may be used for addressing. As with direct

169

access, a structure is typically implemented on top of the

file (e.g., a B-tree) to increase the performance of

retrievals and the expense of updates.

2.4.1.2.4. Indexed Sequential. This

access method is optional depending on how the OS implements

indexed access. It is frequently the case that a file

accessed directly or by index will also need to be accessed

by the user sequentially at times (e.g., an accounting

application will need sequential access for end-of-month

processing). If the OS implements indexing as a B-tree or a

hash table, then no straight forward means of sequential

access is possible other than the unacceptably high-cost

method of attempting to access every possible key value in

ASCII order (99% of the attempts will fail, and the cost of

a failure is usually higher than the cost of a successful

search). In such cases, the OS may provide an indexed

sequential access method that supports both direct and

sequential access at an acceptable cost. The form of

implementation varies but by far the most frequent in

contemporary systems is the B+ Tree (a B-tree in which the

leaf nodes are linked from left to right). The cost of

sequential access is still considerably higher with a B+

Tree than with a sequential file but are, at least, accept-

ci i for reasonaoly small files (see Updates below).

170

2.4.1.2.5. Virtual Indexed Sequential.

VSAM. as it is commonly called. is found only on high-end

mainframes. It is an implementation of indexed sequential

access in which the file is also maintained as a "virtually"

sequential file; i.e., it is physically sequential inasmuch

as is possible, and is maintained that way by performing

page splits on the file itself, similarly to the way a

B-tree performs page splits in the index (see Updates

below).

2.4.1.3. Versions. Versioning refers to the

way in which the OS is able to access prior states of the

file (not to be confused with backup - see Imaging below).

In a simple OS this is typically left as a user problem. In

high-end mainframes, it is the rule rather than the excep-

tion (e.g.5 an accounting system needs to create its monthly

billing as of the end of the month but may not do so until

the tenth of the following month).

2.4.1.3.1. Snapshots. The "do nothing"

approach is to copy the entire file as it exists on the date

for which processing is desired. This is workable for small

files but virtually prohibitive for very large files (e.g.,

t'he transactions of a major bank).

171

2.4.1.3.2. Audit Trails. In medium to

large systems, the OS can restore a file to a prior state by

undoing the actions recorded in the audit trail (which it

maintains for other purposes - see Imaging below) that

occurred since the desired date. This allows access to

current data to proceed as normal, while the program

accessing a prior version will incur an added processing

expense.

2.4.1.3.3. Differential Files. When

accessing historical data predominates access to current

data, the OS can perform updates through a "differential"

file. In this approach, Usually found only on high-end

mainframes, the file remains static for periods of time that

correspond to work cycles (days, months, etc.) and during

those cycles, updates are recorded in a separate "differen-

tial" file. Every access request is accompanied by a time

stamp indicating the currency of the data requested. The OS

obtains the baseline information from the file and then

"picks" the differential file for updi s that have occurred

between the static file time and the requested file time.

This has the opposite effect of audit trails in that the

cost to access historical data is less, while the cost of

accessing current data is correspondingly higher.

172

2.4.2. Device. Devices refer to the physical

hardware components with which the OS must interface.,

including the devices on which data files reside. The

principal characteristic of an OS with respect to devices is

its flexibility in interfacing to different devices, either

existing, new or virtual. The means by which an OS inter-

faces to a device is referred to as a "device driver" and

it is the presence of device drivers, separately from the

file system, that allows the user a high degree of uniform-

ity in performing and redirecting [7] I/O operations and

also allows the OS to unify its internal structure for most

of the standard functions (e.g., open, close, read, write,

etc.) performed on files.

2.4.2.1. Installed. An older OS (e.g., Unix)

is typically supplied with a set of device drivers already

installed as an integral part of the OS. It assumes that

there is a standard complement of devices in the environment

and is able to interface with exactly those devices.

2.4.2.2. Loadable. A modern OS is also

supplied with a set of device drivers, but they are not

installed in the OS. Instead, the user defines a "configur-

ation" file that specifies which devices actually exist in

the environment; and the OS interrogates this file to

determine which drivers to load. This has the advantage

173

of consuming onI',; the memory necessary for the device

drivers actually needed at any given time.

2.4.2.3. Definable. An OS with definable

drivers goes one step beyond an OS with loadable drivers by

specifying a standard protocol for defining device drivers.

This allows the user to write and use drivers not supplied

with the system, either to interface to a new device , but

more often to create a virtual device out of existing

hardware so that it can be treated uniformly as a file e].

2.4.2.4. Raw. A "raw" device driver is a

driver that allows the user to access an existing device

directly, without going through the OS file system, while

concurrently allowing the OS to use that device as part of

the file system. Raw I/O is usually implemented as a

partition of the device, particularly for storage devices

such as disk drives. In such a case, the OS supports the

definition of only a subset of the device as a standard

file, and leaves the balance of the device available for

either the user or another OS. This is the principle means

by which applications can be easily ported from one OS to

another by running the original OS as a user process of the

new OS.

174

2.4.3. Cache. The cache of the OS refers to that

part of the file system that buffers data between memory and

the file. The way in which the cache is implemented is a

prim,:ry characteristic of OS integrity and performance.

2.4.3.1. Synchronous. If an OS provides a

synchronous cache, it means that data to be read from or

written to a file is physically read or written immediately

upon the user's request. This guarantees that the physical

file will always be consistent with the user's image of it

and conversely. This provides a very high degree of

integrity and is very easy to implement. In fact, it is

often the case that an OS provides a synchronous cache with

no implementation at all; i.e., I/O is performed directly to

and from user memory immediately upon request. However, a

synchronous caching system is also the most costly, as every

I/O request suspends the requesting process until the IO is

complete and may even cause other processes to be suspended

if their I/O requests overlap in any way (e.g., the same

device, the same channel, etc).

2.4.3.2. Read Ahead. A "read ahead" cache

preserves some of the integrity of a synchronous cache in

that all writes are synchronous. However, reads are

anticipated and performed before being requested. This

occurs either explicitly by the user supplying an "intent"

175

parameter when the file is opened, or dynamically by

monitoring the usage of the file. Read ahead is almost

always done sequentially and is accomplished by reading one

or more components of the file during a time when the user

process is inactive in hopes that the components read will

be requested by the user process when it is reactivated.

The sacrifice in integrity is that, unless a loc.ing scheme

is employed (see below) if more than one process is access-

ing the same file, the image in memory that was read

asynchronously for one process may not be consistent with

the intentions of the other process in a way that is

impossible for the OS to detect. E.g., the second process

may synchronously change the file while the first is still

processing based on the memory image it received; and if it

makes a change to the file, it will supercede the changes

made by prior change.

2.4.3.3. Write Behind. When "write behind" is

added to "read ahead" caching, the result is a cache that is

completely asynchronous with the processes using it. When a

read request is received. the cache is first checked to see

if the data is already in memory. If it is not, the request

is placed on a heap with all other pending IO requests.

When a write request is received, the only effect is to set

a flag in the cache image indicating that it was changed

since it was read and needs to be rewritten to the file, and

176

to place that write request on the heap. The physical I/O

takes place at the leisure of the OS as follows: (a) the

heap is sorted by physical address and processing commences

in that sequence; (b) each read request first checks to see

that there is a clean (empty or unchanged) page in the cache

and if there is, the read is processed, otherwise it is

placed back on the heap; (c) each write request is processed

and its cache page is +lagged as empty; and (d) the process-

ing continues until either all the requests are serviced or

the system is interrupteo by a higher priority process. The

net performance advantage is that, for a disk, the arm

motion is that of an elevator, smoothly moving from the

outer track to the inner and back again, depositing anc

picking up data as it goes. The integrity lost is that

neither reads nor writes occur iin the sequence in whi-'1 the',y

were requested.

2.4.4. Imaging. Imaging refers to the means by

which the file system is able to recover from a failure.

either of a user process, or of the media itself. It is an

important characteristic of the OS in terms of both currency

of data and system availability.

2.4.4.1. User. The "do nothing" approach is

to allow the user access to a physically independent device

during processing on which it can record a:nthing it

177

wishes. When a media failure occurs, it is the user's

responsibility to run a process that can interpret what was

written and attempt to reconstruct any lost or corrupted

data.

2.4.4.2. Before. "Before imaging" is a

feature provided by the OS that automatically writes a copy

of every page of a file that is read to a physically

independent device. When a failure occurs, the OS replaces

every page of the file with its most current "before image"

to effect a "roll-back" of the file to the most current

consistent state that existed prior to the failure. Before

imaging is a "pessimistic" policy that incurs a large

overhead during normal operation (every read causes a

write), but is able to quickly restore the file in the event

of a failure.

2.4.4.3. After. "After imaging" is a feature

provided by the OS that automatically writes a copy of every

page of a file that is written to on a physically indepen-

dent device. It implicitly assumes that a backup copy of

the file is made at regular inte,-vals. When a failure

occurs, the backup copy is used to reinstate the file, and

the latest "after image" of every page that has changed is

applied to the file by the OS to effect a "roll-forward" of

the file from a backup state to the most current consistent

178

state that existed prior to the failure. After imaging is

an "optimistic" policy that incurs little overhead during

normal operation (only writes are duplicated and there are

very few writes compared with reads), but massive overhead

in the event of a failure since the entire file must be

recreated from its backup copy.

2.4.4.4. Mirror. Mirror imaging is very

reliable and very expensive and is employed only in systems

where the ability to recover from a failure very quickly is

critical. A real-time air traffic control system would have

such a requirement. In mirror imaging, the OS has access to

replicate hardware which, while not dedicated to the OS, is

used only for lower priority functions that can be dispensed

with in the event of failure. In this approach. the OS

begins by creating a mirror image of the files on the repli-

cate system. Subsequent to that, every I/0 operation is

written to a log on the replicate system which, periodicaliv

and quite frequently, is suspended from any other activities

to process the log and bring the mirrored files up to date.

When a failure occurs, the OS aborts any processes using the

replicate hardware, processes any outstanding IO opera-

tions, and resumes processing with the new hardware.

2.4.5. Update. The means by which an OS physic-

ally updates files is highly correlated to the way in which

179

the cache operates, and whether and to what extent the OS

provides imaging. However, the characteristic of importance

in updating is that of performance.

2.4.5.1. In Place. In a performance intensive

system, particularly when sequential processing is involved.

the OS uses an "update in place" policy to preserve the

physical clustering of file components. However, since

updating in place may require a long update cycle (i.e.,

pages may have to be split and data reallocated), it is only

employed in systems that have either a very robust recovery

mechanism (sufficient to recover from a failure during the

update cycle itself) or little or no requirement for

recovery.

2.4.5.2. Replace. In systems that do not

require high-performance sequential processing and in which

failures are frequent and recovery support is minimal, the

OS uses a "replace" policy to reduce the time during which

an inconsistent file is exposed to failure. In replacement,

updates never touch the existing pages of a file or its page

map except for the very highest level of the page map which

is usually a single page. When an update is processed,

new page is allocated from the free list for the data, and

for every page of the page map that is affected. The 0S

then proceeds to write the updated data onto the new oges.

180y

However, until the top-most page oV the p ags Tap I- o ritter,

none oft the new pages are 1ogical!, ,rnne ftm into the file,

and the top-most page is the last to be written an's it 1 E

only when it is written that the free list ,wIhicm is a l , :F-_

in memory) is only synchronized. Thus, the only time a

failure can leave the file in a corrupted state is the brief

interval when the top page of the page map and the free list

are synchronized. Any failure before that interval leaves

the file as it was before the update cycle began. The cost

for this minimal exposure is that the pages of a file are

scattered in location making sequential processing extremely

expensive.

2.4.6. Lock. Locks refer to the serialization

mechanism by which an OS allows multiple processes to share

files without allowing either conflicting or unpredictable

results. The way in which an OS locks files is an important

characteristic of both its integrity and performance. It is

not always the case that an OS even provides locks and it

goes without saying that such systems either have little or

no concurrency to deal with or little or no concern for

integrity (e.g., the last process to write the record wins).

2.4.6.1. Granularity. The granularit, of

locks refers to the level at which locking occurs. In an OS

that supports a low level of concurrency, locks are t',pic-

181

ally very coarse; e.g., an entire file or even an entire

device will be unavailable to any other process until the

process that locked it terminates or otherwise releases the

file. To support a high degree of concurrency, the OS will

provide for very fine locking at the page or even the field

level so that many processes can concurrently update the

same file so long as they don't attempt to change the same

data value.

2.4.6.2. Exclusivity. The exclusivity of

locks refers to the number of modes in which locks can be

obtained and the compatibility among modes. In a simple OS

with low concurrency there will be a single mode of locking

that is exclusive; i.e., a process having a lock on a

resource is incompatible with any other process having a

lock on that resource. In an OS that supports a high degree

of concurrency, there will be a large number of lock modes

(e.g., read only, read with possible write, read with write

intent, write intent, write for sure. etc.) and many mode

compatibilities; e.g., a process having a write intent lock

-n a resource is compatible with any number of other

processes having a read-only lock on that same resource.

2.4.6.3. Implicity. OS's will vary in the

degree to which locking is implicit and to the degree to

which explicit locking is permitted or required. At one

162

extreme, an OS may require all locking to be explicit.

leaving all responsibility for correct locking to the

user. This has thE advantage of being very fast and simple

and the disadvantage of providing little guarantee for

integrity. At the other extreme, an OS may perform all

locking implicitly and not permit explicit locks. This has

the advantage of providing very high integrity at the

expense of a great deal of overhead incurred as the result

of limited knowledge. An advanced OS will provide implicit

locking at all times, but will also permit a user that knows

he will rewrite an entire file to explicitly lock the entire

file so the OS will not incur the overhead of implicitly

locking it one page at a time (or of bothering to allow the

process to even start until the entire file is available to

be locked).

2.4.6.4. Deadlock. Any locking protocol in

which the granularity is less than an entire set of related

files gives rise to the occurrence of deadlock. Deafleck is

a situation in which two processes are waiting for each

other to release a resource [9]. The major variants involve

how deadlocks are detected, and how they are broken. An

elaborate OS will periodically piece together a wait-for

graph and examine it for cycles (a deadlock can occur

transitively amcng many processes). If one is found, it

will analyze the progress of each process whose elimination

183

would break the cycle and abort and restart the process with

the least time invested. A simple OS will merely abort all

processes at some regular interval and restart them in a

random order.

2.5. IPC. Inter-process communication (IFC) is the

means by which an OS allows different processes to communi-

cate with each other. One major issue is the channel by

which the communication occurs. The other is how the

processes are synchronized in order for the communication to

occur; i.e., how does one process know that another process

wants to communicate with it. Both are important character-

istics of both the performance and functionality of an OS

and both present interesting problems for the OS since such

a great effort is invested from preventing processes from

interfering with each other.

2.5.1. Files. Perhaps the simplest approach is

that of allowing the users themselves to establish a file on

which messages will be written and from which messages will

be read. As long as one process is the sender and the other

is the receiver, the OS lock system will synchronize the

processes correctly. The receiver periodically requests a

read lock on the file. If it is granted, it releases the

lock and proceeds. If it is refused. it upgrades its

request to a write lock waits until the lock is granted and

184

then reads the message. The sender, when it has a message

to send, repeatedly requests a write lock and releases it

until the lock is not granted and then re-requests the write

lock and waits for it to be granted and writes the message,

holds the lock for a mutually agreed upon interval (the

frequency with which the receiver requests read locks) and

then releases it. The result is a signal/semaphore between

both processes.

2.5.2. Shared memory. Two processes can share

some common memory and establish their own signal/semaphore

protocol. This is faster than the file system but requires

a small participation of the OS overtly since memory is

normally protected from other processes. I.e., the OS must

support an explicit "share" memory allocation request.

2.5.3. Pipes. The simplest completely overt

support for IPC by an OS is to support an explicit request

for IPC from one process as a sender and another process as

a receiver. When a matching pair of requests are received,

the OS establishes a "pipe" from the sender to the re-

ceiver. The pipe is a memory queue into which the sender

writes and from which the receiver reads. Both sender and

receiver wait on "full" and "empty" signals respectively

(two-way communication requires two pipes).

185

2.5.4. Sockets, A mo-e complex overt IPC support

is a message pool into which many processes can write and

from which many processes can read. A socket works like a

pipe but augments the simple full/empty protocol with a

process identifier so that messages can be "addressed to"

the intended process or processes.

2.5.5. Rendezvous. The most advanced IPC is that

provided in the APSE (Ada Programming Support Environment)

which is, for all practical purposes, an OS in and of

itself. In process rendezvous, any process can request,

from the OS, a rendezvous with one or more processes. The

OS coordinates all such requests and when a consistent set

of requests have been received, all of the participating

processes are interrupted and reactivated in a new context

which is created by the OS solely for the purpose of IFC,

and with a new code segment generated explicitly by the

compiler for handling IPC. It is supposed to be the case

that the compiler or the APSE checks that all rendezvous

code is consistent.

186

3. LAN System Software.

Local Area Networks (LAN) are sufficiently "new" insti-

tutions that there is little standardized terminology and

little agreement on even what comprises a LAN. On this

question, the fundamental distinction is whether the

processors (hardware systems) are closely or loosely coup-

led. A closely coupled LAN is a grouping of hardware

systems under the control of a single LAN software system.

In this configuration, the LAN is an operating system and

has all the characteristics just described; and there is no

issue of OS/LAN compatibility since only one system exists.

This configuration will not be discussed. A loosely coupled

LAN is a grouping of hardware/OS software systems that

cooperate in order to achieve some higher-level common

goal. In this configuration, even if the operating systems

are uniform, it is of paramount importance that the LAN

software and the OS software system(s) be compatible in many

respects because each OS is in control of its own hardware;

the LAN is in charge of distributing data, processes and

control among the OS's; and each OS at any given time may

operate completely independent of the LAN, completely

subservient to it. or somewhere in between. It is in this

loosely coupled context that the following discussion will

proceed.

187

ALAN consists of, first and foremost, a net (or bus or

channel or backplane or ...) to which separate systems are

connected via a hardware interface board in the same way

that they would be to any other peripheral device (i.e., the

net does not have the status of the system bus unless it is

explicitly accorded that status by the OS software). The

net can be of any kind of media (fiber optics, coaxial,

twisted pair, etc.) or combinations of media; and a net can

be of any kind of topology (star, ring, drop, etc.) or

combinations of topologies. Neither of these parameters are

of issue. Secondly, the LAN software is software and all of

it must run somewhere, but not all of it necessarily runs

at the same place, and some parts of it may run at several

different places concurrently. To ease the discussion, the

term "service" always refers to some coherent piece of

sc'tware regardless of how it is distributed among systems;

and the term "server" refers to a single hardware/OS that is

connected to the net which will also be referred to as a

node.

In this context, the major concepts of which a LAN is

comprised are servers, services, the mapping of services to

servers, address protocol (how messages are sent and

acknowledged among nodes) , and transactions (tasks accomp-

lished by the LAN).

188

3.1. Server. To reiterate, a server is a single

hardware/OS system or "node" that is connocted to the

net for some reason (its participation), in some way (its

coupling) with a given status (set of privileges. These.

taken singularly, serve as the principal server character-

istics. Taken collectively, they describe the hardware

component (other than the net itself) of the LAN.

3.1.1. Participation. The degree to which a

server is a producer for the LAN is its raison d'etre. This

c;n rdnge from being totally dedicated to the LAN in which

case it serves no other functions independently; to being

nothing but a consumer of LAN services in which case it

contributes nothing and exists solely to perform other

functions. Typically, a server is both a producer and

consumer of LAN services to some degree and the degree to

which it is a producer characterizes the server as far as

the LAN is concerned; and the collective degree to which

servers are producers characterizes the LAN as a whole

in terms of its capacity to do work. LAN's typically have

servers of all of the types mentioned.

3.1.1.1. Dedicated Servers. A dedicated

server exists solely to serve the LAN. Dedicated servers

are usually so because of their hardware resources.

For example, a LAN may contain a print server which is

189

connected to a collection of printers of various types, and

exists solely as a print .tation to serve other nodes.

3.1.1.2. Partitioned Servers. A partitioned

server is usually a multi-processing node that is parti-

tioned so that some of the processes are dedicated to the

LAN, while others are invoked on behalf of users of that

node. An exemplar of such a node would be main-frame

system that supports a large database for its users, but

some of that database is public to the LAN. In this case,

the OS of that server might create some primed processes to

service incoming LAN requests, and others to service its own

users.

3.1.1.3. Available Servers. An available

server is a node which is functionally dedicated to its

users, not the LAN, but at varying times (e.g., at night)

has excess processing capacity which it exports to the LAN.

To put it another way, when the LAN workload is sufficiently

heavy, the LAN software may solicit help from nodes that are

connected to but not functioning on behalf of the LAN at the

moment.

3.1.2. Coupling. The coupling of a server to the

net occurs through a hardware interface board or "net

board." What is important about the net board in terms of

1 QO

characterizing the server and the LAN as a whole are: (1)

the functions of which the net board is capable; and (2) the

presentation of the net board to the balance of the server.

3.1.2.1. Board Functions. A net board may be

very simple, capable of merely translating a byte from an

interface register to a signal compatible with the net and

conversely. At a higher level of functionality, a net board

may implement the entire address protocol so that all the

node has to do is create a message in a transmit buffer

whose location is known to the board, and the board will

carry out all the functions necessary until a receive buffer

whose location is known to the board has been filled with

the desired response. In addition, depending on the

topology of the net, numerous LAN functions may be carried

out directly by the board without interrupting the node at

all. Such functionality might be as a repeater in a ring or

a reflector on a drop.

3.1.2.2. Board Presentation. The way in which

the net board appears to the server can vary widely,. It may

be interfaced as a peripheral port; i.e., a 10 bit register

with R data bits and two status bits. In this case it will

appear as a device and will probably be accommodated by the

OS as part of the file system through an associated device

driver. By contrast, it may be mapped directly into one or

191

more memory pages it which case it may be accommodated as

either a process that is accorded a share of the execution

cycle of the node, or as shared memory that appears to be an

IPC area. When the latter is the case; i.e., the board

appears as IFC; there is usually one or more OS processes

communicating through it to OS processes on other nodes.

Such a presentation is called "message passing" and the OS

processes are called the "message passing kernel" (see

below).

3.1.3. Status. Every server acquires one or more

statuses with respect to the LAN and requires at least the

status of "being known" to at least one other server in the

LAN before it can acquire any additional status. The

initial status assignment can be made in a variety of ways

depending on what other statuses are defined for the LAN.

I.e., the initial status assignment protocol, alone, is a

highly characteristic of the LAN in terms of status.

3.1.3.1. Existence. Presuming that an "about

to be" node has the necessary hardware and software that

enable communication with other nodes of the LAN, some

process must occur by which the node becomes "known" to

these nodes. This procedure will vary in two principle

dimensions based upon the mode of addressing employed by the

192

LAN, and the way in which statuses are acquired within the

LAN. Only the latter is of issue here.

3.1.3.1.1. Hierarchic In LAN in

which statuses are hierarchic, a new node will typically

become known by virtue of an action on the part of the

highest level node or "net manager." I.e., an end user with

an equivalent status (e.g., the LAN administrator) will

enter the name, physical LAN address, resources, and other

descriptive information about the node, and grant it privil-

eges and possibly responsibilities with respect to the LAN.

3.1.3.1.2. Collateral. If the LAN is

primarily collateral; i.e., all nodes are essentially peers*

a new node will typically become known by one of two

processes. If the LAN implements security, the new node

must be "escorted" into the LAN by another node which will,

on behalf of the new node, introduce it to that compartment

of the LAN in which it is known and it will acquire the

privileges accorded that compartment. If the LAN has no

security, the node may log onto the LAN as a consumer

terminal, and request admission to the LAN. This request

will be fielded by some service of the LAN that deals with

incorporating new nodes.

193

3.1.3.2. LAN, Having LAN status carries the

privilege of being solely in charge of the LAN and directing

the behavior of any other server. Such status is accorded

under one of two circumstances. If the LAN depends on

having a "master/slave" relationship, some server will be

accorded LAN status either manually, when the NET cold-

-starts [10], automatically when the server with LAN status

elects to abdicate this status to another server, or after a

failure of the LAN-high server. If the LAN is collateral,

there is, by definition, no such status defined. There will

be, however, a similar set of privileges accorded to a "Net

Maintenance Service (NMS)" whose primary job is to run

diagnostics and correct failures. Every server is obligated

to cooperate with and obey the instructions of the NMS if

the LAN is to be durable, but the NMS is primarily a passive

function and will only take on a leadership role when there

is a failure of the LAN and will dispose of that role as

soon as possible thereafter.

3.1.3.3. Transaction. In collateral LAN's,

leadership is accomplished on a task basis. To be succes-

sful across failures, every transaction undertaken by the

LAN must be managed by a single server, with all other

participating servers subservient to it with respect to that

transaction. Note that, explicitly, a transaction only

involves multiple services, not servers. However, the

194

mapping of services to servers will usually yield the case

of multiple servers participating in a transaction.

Nevertheless, it is not sufficient to the transaction

management protocol (see below) that a single service be in

charge (that is always the case anyway since transaction

management, itself, is a service), but rather that a single

server be in charge, and it will likely be (but not neces-

sarily) one of the servers invoked by one of the services,

and usually the server in which the transaction began. The

result is that, at any given time, a server will concur-

rently have the status of transaction manager for some

transactions as well as being a participant in other

transactions and being subservient to those transaction

managers.

3.1.3.4. Service. If a service is distrib-

uted across multiple servers, one of those servers may

acquire the status of a service manager. This is not a

requirement, but rather the fallout of the design of the

service. For example, a database service may well be

designed to have a single server fielding all requests for

the service and parsing the requests prior to distributing

them so that parse trees are the means of communicating and

oarsing does not have to be repeated. Since that server is

the node that acknowledges the rece~ot of all requests, it

is reasonable to have that node be in charge of all request

195

scheduling and result distribution which effectively makes

it a service manager.

3.1.3.5. Sub-service. If there is a service

manager, then other servers in that service may take on a

sub-service status which is to say that they may not even be

known to servers outside the service, and respond only to

requests of the service manager. Again, this is usually a

service design consideration.

3.2. Service. A service is a functionally coherent

software system that is capable of performing one or more

well-defined tasks for the LAN or its users. Some services

are integral to the LAN and the LAN could not operate

without them. These would include net maintenance, transac-

tion management, addressing, etc. Others are much like

general applications such as word processing and file

management while still others are organizational applica-

tions (e.g., accounting). For the purposes of this discus-

sion, it is not as important to pursue the question of what

services exist as it is to discuss what kind of services can

exist for this will characterize the LAN as a general

purpose system. And the principal characteristic that

limits the possibility of a service is the mapping of

services to servers.

196

3.2.1. Confined. A service is said to be "con-

fined" if it must exist on a specified server. Confined

services arise either because of specific hardware require-

ments or a limitation of the LAN. An exemplar of the

former would be a LAN in which only one server had a

printer. The print service would obviously be confined to

that server. The latter occurs when the addressing func-

tionality of the LAN is limited such that: (1) the only

status conferrable to a server is that of service manager;

i.e., there is no sub-service status; and (b) a service is

addressable only by name and cannot be qualified by loca-

tion.

3.2.2. Migrant. A migrant service obeys the

constraint of a confined service that it must exist on a

single server; however it is not necessary to specify which

server. It is thus able to migrate from one server to

another but will only exist on a single server at any given

time. Migrant services could arise from a LAN limitation

that a service cannot be distributed or replicated (see

below) but usually arise because of a functional requirement

of the service. An exemplar of the latter would be the net

maintenance service. Even if the LAN supported replicated

services, the net maintenance service would not be allowed

to exist on multiple servers because they would be in mutual

conflict.

197

3.2.3. Singular. A singular service refers

directly to the LAN constraint that messages are addressed

to services by server name through a 1:1 service:server

mapping. Under such limitations, the only way to replicate

a service on more than one server is to give it another

name. E.g., if it is desired to have the print service at

two locations, the services would have their location

embedded in their name such as Print-LRI and Print-IAS. The

LAN would not be aware that the services had any similar-

ities and would never attempt to use one in place of

the other.

3.2.4. Plural. A plural service is permitted when

LAN addresses contain a location component. Each instantia-

tion of the service is still restricted to be wholly

contained within a single server, however there may be many

such servers offering that service. For example, if many of

the servers in the LAN have printers, then all of those

could run the print service concurrently and a user could

either specify a particular location at which the printout

is desired, or could allow the print service to schedule the

print request on the first available server. When plural

services are permitted, it is necessary that something

schedule and route requests for the service. In some cases,

particularly those in which scheduling does not require

198

knowledge of server resources, there may exist a scheduling

service that will route the request. When inside knowledge

is required (e.g., in a file service where each server has

different files) the service will normally provide its for

its own scheduling through a message protocol.

3.2.5. Distributed. A distributed service is one

in which the service spans several servers, each running

only part of the service. The ability to have a distributed

service is not limited by the LAN directly, but is more or

less facilitated by the LAN through various support mechan-

isms. At the least level of support, the designers of a

distributed service will have to determine a priori how to

allocate the service among servers, provide for their own

intra-service message and transaction protocol, and to

decide the means by which requests for the service will be

fielded and the results disseminated. At the highest level

of support, the LAN will provide all of these functions as

services and will provide a distributed compiler that allows

the user to write the service without concern for which

procedures reside on different servers and which are

collocated, a fact which is, itself, one that can change

dynamically during processing.

3.3. Address. For one service to address another

service is to get information to it (a request) and receive

199

information from it (a response) an. this represents

the inter-service communication capability of a LAN. In

addition, if the LAN supports distributed services, it is

also necessary for the processes of a service to address

other processes of the service which may not be collocated

on the same server and this represents the intra-service

communication capability of the LAN. It is possible for a

LAN to employ different mechanisms for inter- and intra-ser-

vice communication and such will be the case where there is

a vast difference in the volume and frequency of messages

of each type. Conversely, the LAN is considerably simpli-

fied if only one form of address serves both requirements.

The way in which a LAN supports address is characteristic of

its functionality, its performance, and its utility as a

whole. The following descriptions assume, for simplicity,

that all nodes are connected directly to the net, although

this is not a requirement (connections can be virtual even

though they may not physically exist at the lower levels of

the net protocol).

3.3.1. Broadcast. By far the simplest means of

synchronous address is broadcast. In broadcast addressing,

the sending service encodes a message with both a source and

destination identifier and transfers it to the net board for

transmission. The net board then repeatedly transmits the

message each time it receives the token (in a token-passing

200

net) or finds an available slot (in a slotted net) for some

routine interval. The receiver side of the board both

downloads every message on the net into a receive buffer as

well as repeating it if the net technology requires repeat-

ers. Conversely, the net board examines every message on

the net and determines whether the encoded address matches

(or includes) its own address. If so, it removes the

message from the buffer, replaces it with an acknowledgement

message, transmits the acknowledgement message and generates

an interrupt in the server. Whatever service is running in

the server proceeds to examine the message and determine

what, if any, action it should take. As would be expected,

broadcast works well when services are highly replicated

resulting in a high ratio of receivers to senders., messages

are highly asynchronous, and security is of no concern.

3.3.2. Circuits. Circuits are a refinement

of broadcast addressing in that only the source and destin-

ation identifiers are broadcast. The receivers, when they

get a matching address, then prepare to receive the message

contents as the very next message with a matching identi-

fier. The sender waits for an acknowledgement from all

destinations, if all destinations are known, or for some

period of time otherwise and then broadcasts the content of

the message the next time it has access to the net.

Circuits greatly reduce both the amount of information

2 0 1

on the net and the amount of time spent downloading and

examining information, especially if messages tend to be

quite large.

3.3.3. Packets. Packets are a refinement of

circuits that allow messages to be broken up into short

segments so that only part of the message is transferred

each time the circuit is established. Packets provide for a

fairer distribution of the net in the presence of lonq

messages while still preserving message synchrony. When

messages are typically very short, the difference betweOn

circuits and packets becomes minimal.

3.3.4. Datagrams. A datagram refers to a message

prefaced by a source and destination address that is sent

independently of any other messages flowing between those

addresses. As such, it is very simple to implement but does

not encode any form of synchronization. I.e., datagrams are

not necessarily received in the order they are sent and

there is no guarantee that a datagram will be delivered.

Datagrams are very efficient for inter-service communication

which is usually of an asynchronous nature anyway, and for

intra-service communication in which the synchronization is

so complex that the service will normally implement its own

synchronization protocol regardless of what the LAN provides

(transaction management service is of this type). It is

2C2

quite common for a LAN to be partitioned with some of the

bandwidth reserved for circuits, and any time unused by

circuits available for datagram traffic.

3.3.5. Message Passing. Message passing refers to

the transfer of data directly between or among th processes

that implement a service via an underlying inter-process

communication service. Such a service is referred to as a

"message passing kernel" and has the distinct advantage that

the pr.ocesses of a service communicate with each other at

all times as if they were running on the same server. Thus,

programs written to provide a function in a stand-alone

environment are very easily ported to provide those func-

tions as services on the LAN. The difficulty with message

passing is that the user of the kernel implicitly depends on

the kernel to provide the same level of synchrony and

guarantee that the OS IPC does. It also requires that a

context switch occur in the OS each time the kernel is

accessed since it runs as an OS process; i.e., each IPC, in

effect, results in three IPC's, one from the local process

to the local message passing kernel, another to the remote

kernel, and a. third between the remote kernel and the remote

process.

3.3.6. Tickets. Tickets are an advancement over

message passing that bear the same relationship to it as

203

primed processes do to forked processes. When a receiving

process initializes for a processing session, it broadcasts

(via the message passing kernel) a set of "blank order

forms" called tickets in the amount of the number of

requests it expects to service during that session. Other

services similarly retrieve as many tickets as they expect

to need during that session. This has the effect of

pre-establishing all of the IPC's to the point of being

ready to accept data (similar to a virtual circuit).

When a requesting service has an actual service request,

it simply fills in the contents of the message which causes

the service that sent the tickets to be interrupted.

3.4. Transaction. The purpose of a LAN is to accomp-

lish work by a concerted and cooperative effort among the

services of the LAN. To do so in an orderly manner, the LAN

implements the concept of a transaction to represent a unit

of work in much the same way that an OS implements the

concept of a process. A transaction has three basic

properties: it is atomic (i.e., either it occurs or it

doesn't); it is durable (i.e.. once completed its effects

can only be altered by another transaction); and it is

consistent (i.e., if the state of the LAN was consis-

tent before the transaction it will be so after the transac-

tion). The means by which the transaction concept is

implemented in the LAN is the primary characteristic of its

204

integrity. The function of transaction management may be

implemented as a service or directly in the kernel of the

LAN.

3.4.1. Implicity. The degree to which transac-

tions are explicitly started by the user or implicitly

started by the LAN has a direct bearing on its integrity and

performance. Some LAN's will implicitly begin a transaction

at the first attempt to access a recoverable resource [il]

by any process. This offers high integrity when it works

correctly but this is not always the case since the LAN does

not usually know which other processes the accessing process

is cooperating and must infer this from the IPC. The

opposite extreme is to provide for an explicit Begin

Transaction call. If the protocol is followed by all users,

the integrity is just as high if not higher than implicit

transactions. Explicit transactions also allow the user

option of not invo.:ing transaction management if the user in

unconcerned about the aftermath of a failure; or knows it

will not engage in any actions that could leave the system

in an inconsistent state.

3.4.2. Serialization. In order to implement

transactions, there must be a mechanism for serializing the

actions affecting recoverable resources so that if a failure

occurs, the sequence of actions taken or intended can be

205

reconstructed and either re-done or un-done. The means by

which a LAN implements serialization is a principle charac-

teristic of the LAN and the possibilities for serialization

are as follows.

3.4.2.1. Locks. Locks inherently sequence the

processes accessing resources through queues. The imple-

mentation of locks is similar to that described for the OS

file system. Locks are successful if all users obey the

locking protocol. Failure to obey the protocol does not

allow a user to actually access the resource, but it denies

the LAN of the knowledge of the sequence in which requests

for the resource occurred.

3.4.2.2. Timestamps. An alternative to locks

are timestamps. Every process request to access a resource

is appended with a timestamp indicating "when" the request

was issued. A timestamp is not usually derived from a clock

£12) but from a counter that is passed among the servers by

the LAN. When a server receives the counter. it increments

it for each resource request it issues and then passes it to

the next server. A timestamp is similar to a token in a

token-passing net. Timestamps are relatively expensive to

implement since they require that every server update and

pass the clock even if that server has no resource requests

(which is most of the time). They also impose the require-

206

ment for a very elaborate restart process (see below) in the

event that the failure causes the clock to be lost (e.g., if

the failure occurs in the server with the clock).

3.4.2.3. Tickets. Tickets are an extension of

tickets already described for messages to cover all re-

sources of the LAN. In ticket serialization, a process

acquires numbered tickets for each resource it expects to

request during a processing session. When it has a request,

it issues the request appended with the lowest numbered

ticket in its possession. If the request is not granted, it

continually reissues the request appended with the next

highest ticket until the request is granted. Tickets "pre-

-queue" resource requests in order to absorb as much of the

serialization overhead as possible in advance.

3.4.3. Logs. If recovery is to be possible, every

transaction must create a log of all its actions (or

intentions - see abort processing below) with respect to

each recoverable resource which it accesses during the

transaction. Note that, in order to be of any use, a log

must always be treated as a non-recoverable resource; i.e..

it is the very fact that the log is inconsistent after a

failure that makes it possible to recover other resources to

a consistent state. The kind of log maintained is charac-

teristic of the LAN in both performance and integrity.

207

3.4.3.1. Undo Li1t. An Undo list is an

optimistic approach that assumes that most transactions

complete successfully. The LAN, when it receives a request

to change the state of (update) a resource, writes the

current state of the resource to the list and then actually

services the request. It is optimistic in that, if the

transaction completes successfully, nothing else has to be

done; the updates have already been processed. In the event

of a failure, the prior state of the resource is recovered

from the list and the resource is synchronized to that

state.

3.4.3.2. Intentions List. An intentions list

is a pessimistic approach that assumes that most trans-

actions fail before completion. The LAN, when it receives a

request the change the state of a resource, writes that

request to the intentions list and does nothing to the

resource. When the transaction completes successfullyN the

LAN reads the requests from the intentions list and services

them at that time. It is pessimistic in that when a failure

occurs, nothing else has to be done; no updates to resources

have actually occurred so the resources are still in the

state they had prior to the commencement of the transaction.

208

3.4.3.3. Write Ahead Log. A write ahead log

(WAL) is an approach that assumes that the processes issuing

requests are the only things capable of correctly recovering

resources. The LAN, when it receives a request to change

the state of a resource, returns a unique log address to the

calling process. It then holds the request in abeyance

until it receives a write request to the log at that address

at which time it commences to service the original request.

The LAN has no knowledge of what is written to the log

except the identifiers of both the process and the resource

and the log address. When a transaction completes either-

successfully or unsuccessfully, the LAN recalls every

process and passes them the list of log addresses. What the

processes do when they are recalled is unknown to the LAN.

Transactions implemented via WAL are called two-phase

transactions; i.e., every request is processed twice, once

during phase one of the transaction (prior to destiny), and

again during phase two (when it is known whether the

transaction was successful or not).

3.4.4. Coordination. Whenever a transaction

involves more than one process the processes have to be

coordinated during the transaction. Moreover, if the

transaction involves more than one server, the coordin-

ation must be distributed. Coordination may be implemented

by the transaction management service directly as part of an

209

existing process, as a new process, or as a set of proces-

ses. If the transaction is distributed, the latter of these

will be a requirement since a process cannot span servers

and this will be the case assumed in the following discus-

sion. The functions of transaction coordination that

characterize the LAN are the way in which the transaction is

initiated, how processes enter and exit the transaction

including the effects of nesting, and how the transaction is

concluded (either committed or aborted).

3.4.4.1. Begin Transaction. When-a transac-

tion begins, either explicitly or implicitly, it must be

given a unique identity and some structure must be estab-

lished for recording information about the state of the

transaction (similar to what an OS must do when a process

begins). This is accomplished by establishing a process

when the transaction begins to serve as a place holder for

the transaction. The process may be established on the

server where the transaction began, the server where

the (first) recoverable resource is requested, or a server

dedicated to transaction management service. The former

approach is preferred for performance in that no messages

will be generated unless the transaction is distributed.

The latter is preferred for simplicity but incurs a very

high risk for the LAN as a whole if a failure occurs in that

server. In all cases, the process that requested the

210

transaction is given the unique transaction identifier which

will be appended explicitly or implicitly to every request

of that process until the transaction completes.

3.4.4.2. Entry. A process enters a transac-

tion whenever it is invoked by a process that is part of

that transaction. This will normally be explicit to the

invoked process to the degree that the request to begin the

transaction by the invoking process was explicit [13]. If

the entering process is on the same server, the transaction

management process on that server needs-to be informed about

the new process. This can be accomplished by an explicit

request by the invoked process to enter the transaction, or

the transaction management process can be invoked by the LAN

automatically as part of process invocation sequence. In

the latter case, the OS on that server must, at a minimum,

be aware of the transaction through some mechanism. If the

entering process is on another server, then the transaction

management service must spawn a process on that server to

either parallel its own functioning, or to intercept and

pass transaction related messages. It is not necessary for

the user to know which method is employed; and in either

case the remote transaction management process will be

invoked subservient to the original transaction process

(i.e., will not only run as a part of that transaction, but

will have IPC with it).

211

3.4.4,3 , N@gtin, When a process enters a

transaction, the question arises as to whether that process

is nested in the transaction in the same sense as it is

nested in the process that invoked the transaction. or it is

collateral with all processes in the transaction. In the

former case, the nested process will be invoked for commit!-

abort processing (see below) when it terminates. In the

latter case it will be invoked when the transaction termin-

ates. If the process is nested, then its commit/abort

processing must be based on its own destiny since the

destiny of the transaction is unknown. If the LAN supports

such nesting, it is critical that the LAN or the users or

both have some mechanism for creating compensating trans-

actions to undo the effects of a nested process that

commits since the transaction may abort at a later time.

3.4.4.4. Exit. When a process exits a

transaction the transaction management service must be,

invoked to perform exit processing. If the transaction

is single-phase, this will consist of acquiring all of locks

owned by the process if locks are employed, and all of the

resources acquired by the process, so that the log can be

processed when the transaction ends. If the transaction is

two-phase, this will simply consist of noting on the log

that the process has completed phase-one processing and is

212

prepared to be recalled. In the latter case, it is neces-

sary that the exiting process be prepared to go either way

(commit or abort) at the end of phase one.

3.4.4.5. Destiny. The destiny of a transac-

tion is either commit (successful) or abort (unsuccessful).

The means by which the transaction management service

determines and acts on the destiny is an important charac-

teristic as is when the determinations and actions occur.

In one phase transactions, each process is asked for a

destiny when it terminates. In two phase transactions, pro-

cesses will be asked for a destiny by an explicit request of

the transaction management service. The determination of

destiny is almost always based on unanimous commit (i.e.,

either all processes vote commit in which case the destiny

is commit or one process votes abort in which case the

destiny is abort) although some LAN's will employ a non-

-unanimous voting scheme. In unanimous commit, there also

exists the possibility for unilateral abort; i.e., since one

abort is sufficient to abort the transaction, the transac-

tion management service has the option to interrupt all

processes and direct them to commence abort processing as

soon as one process terminates with an abort destiny. This

is always possible in a one phase transaction by simply

requesting the OS on each server to abort the processes. In

213

two phase transactions, each process must have code to

support early abort processing.

3.4.4.6. Phase Transition. In two phase

transaction processing, phase transition refers to the

processing that occurs between the determination of destiny

and the acknowledgement by all processes of receipt of

destiny. Once all processes have voted and the destiny

determined, the transaction management service enters the

single most critical stage. It broadcasts the destiny to

each process-and logs the acknowledgements as they arrive.

It does not write the destiny (transition) record to the

log until every process has correctly acknowledged the

destiny broadcast. The reason for this is that a process in

a transaction with a commit destiny may still fail before

acknowledging the destiny which will cause the destiny to be

changed. When the destiny acknowledgements have been

received (or the transaction management service has timed-

-out waiting for one or more acknowledgements) the destiny

record is written to the log and the moment that the destiny

record is written is called the "instant of commit" in that

any failure prior to that is equivalent to an abort, and

once the record is written, the destiny of the transaction

is guaranteed (see restart below). The only window for

failure of the transaction management serviced is the time

during which the transaction record is being written.

214

3.4.4.7. Commit/Abort Processing. In one

phase transactions, the transaction management service

commences to process the logs of all participating processes

in whichever manner the logging protocol and destiny

prescribe. In two phase transactions, the transaction

management service proceeds to persistently recall each

participating process to perform its own commit/abort

processing and records the acknowledgement of each process

that its phase two processing is complete. The calls are

persistent in that a process may complete phase two process-

ing but a failure may occur in the process or elsewhere that

prevents the transaction management service from receiving

the acknowledgement. It is therefore necessary that all

processes in a two phase transaction be capable of receiving

idempotent requests for phase two processing.

3.4.4.8. End Transaction. When the transac-

tion management service completes log processing in a one

phase transaction or receives acknowledgement from all

participating processes in a two phase transaction that

phase two processing is complete, either an explicit "end

transaction" record is written to the log if the log is

incremental, or the log is deleted. In addition, all

resources and locks acquired during the transaction are

released.

215

3.4.5. Restart Processing. The ability of a LAN

to restart either after a complete shutdown or a failure of

one or more components is the principle characteristic of

its robustness. In a simple LAN, no explicit restart

processing is performed except the deletion of any incom-

plete transaction logs. This results indirectly in all

transactions that were in progress acquiring the status of

having been aborted prior to the failure. The next level of

sophistication is to examine the logs of any transactions

that were in process to determine which process started the

transaction and to recover the message which caused the

process to be invoked. Then the log is deleted and the

process is restarted with the original message. Note that

this form of restart will not necessarily produce the same

outcome had the transaction completed prior to failure since

there is no determination of how far the transaction had

progressed (e.g., messages may have been sent to other

processes that have not failed). The most sophisticated

restart processing involves a detailed examination of the

log which proceeds as follows.

3.4.5.1. ET Record. If an ET record is found

in the log, it is assumed that the transaction was completed

prior to the failure and was successfully committed or

216

aborted as indicated in the destiny record. If incremental

logging is not in use, the log is deleted.

3.4.5.2. Transition Record. If the ET record

is not present but the phase transition record is present,

then the restart processor compares the list of destiny

acknowledgements with the list of phase two completion

records and persistently recalls any processes that are

on the first list but not on the second. Again, processes

are assumed to be capable of fielding idempotent calls.

3.4.5.3. Destiny Acknowledgement. If the

transition record is not present but there is at least one

vote request acknowledgement, the restart processor compares

the list of vote request ac.:nowledgements to the list of

destiny acknowledgements and re-transmits the destiny to any

processes on the first list that are not on the second.

3.4.5.4. Vote Request Acknowledgement . If

there is at least one vote request acknowledgement, the

restart processor re-broadcasts the vote request. The

processes that did send a vote request acl.nowledgement

before the failure will merely interpret this as a non-ack-

nowledgement of the message and will re-transmit it. In this

case, the restart processor must be able to deal with

idempotent acknowledgements.

217

3.4.5.5. No Vote Request Acknowledgement. If

there are no vote request acknowledgements. the restart

processor will assume that no vote request was ever re-

ceived, hence the transaction had never completed phase one

and will treat it as a case of unilateral abort by broad-

casting an explicit abort destiny and resuming from that

point. This serves to cause processes that are still

waiting for a vote request to commence abort processing,

thereby cleaning LIP the remnants of the transaction. When

the transaction reaches normal ET-abort, the restart

processor will restart the entire transaction. Depending on

the nature of the failure, this process may fail repeatedly

to the point that some manual intervention will be required

[14).

218

4. References.

El]. End users may perceive it to be the case that they
do, on occasion, interface with the operating system -e.g..
running a program, copying a file, etc.) but this is
incorrect. In such circumstances they are, in fact,
interfacing with an application program commonly known as a
"shell" or "command interpreter" which is totally unknown to
the operating system. To reify this point, in MS-DOS a
command line interpreter named "command.com" is supplied by
Microsoft on the distribution disk. However, there is a
variable in the MS-DOS environment table that specifies what
program to execute by default if no other program is
running. That variable comes initialized as "command.com"
but can be changed to specify any program whatsoever such as
a text editor, word-processor or windowing system. And it
is these, not the OS, that the user interacts with. The
user per se of the OS is the person that writes these programs.

[23. Similarly, the problem of infinite regression in the
hardware is also solved by a bootstrap. In this case, the
goal is to load the operating system. But that can't happen
until a process that loads other processes, a "loader" has
started. And since a full-featured loader is, itself, a
complex program, yet another, much simpler program is needed
to load the loader. This regression continues until a very
simple program (e.g., read the contents of track 0 into
memory starting at location 0 and begin executing instruc-
tions at location 0) is reached. This program is then
implemented in the hardware as a Read Only Memory (ROM)
chip or as a set of binary switches. The latter allows for
changing the bootstrap if necessary while the former does not.

[3.]. Whether or not code is re-entrant is as much a
function of the programmer and compiler as it is of the OS.
Re-entrant code has the property that its execution can be
interrupted at any point, and re-entered at any point with a
different data segment. I.e., the compiler (or the program-
mer) provides for the capability to save all of the inform-
ation necessary to restart processing after an interrupt,
including the information about what values were contained

in all of the data variables. Most modern compilers can
generate such code with relative ease since they are
stack-orientedi i.e., they push an activation record
onto a stack each time a procedure begins execution,
including the variables that the procedure was called with.
Making such code re-entrant merely requires having multiple
stacks and stack pointers. Older, unstructured languages
are difficult and often impossible to make re-entrant. To

219

my knowledge, there are no re-entrant FORTRAN compilers in existence.

[4]. There are yet faster memories such as the instruction
pipeline or pre-fetch queue for parallel or quasi-parallel
CPU's respectively, but these are not normally visible to
the OS. There are also hardware registers for specific CPU
functions that may be visible to the OS for communicating
with the CPU, but it is the CPU, not the OS, that manages
the allocation of these. Unfortunately (for this discus-
sion) there are also non-specific hardware registers that
are intended to be visible to the OS and even to the user,
but that is one level of detail too deep for this discus-
sion.

[5]. It should come as no surprise that despite the
elegance and portability of layered software (e.g., Open
System Interconnect), system developers remain very reluc-
tant to separate functions and allocate them to different
processes. Their reluctance is based solely on the cost of
performing a context switch which would otherwise be
unnecessary if the functions were collocated in the same
process. And until the cost of context switching is brought
down to an acceptable level, monolithic operating systems
will continue to enjoy a large advocacy in spite of all
their undesirable consequences.

[6]. The use of the term "page" is somewhat arbitrary.
Disks, for example have "sectors" and tapes have "blocks."
Page is a useful term in that it is both neutral to media

and consistent with the terminology of memory. And since
virtual systems, do not make a strong distinction between
files and memory, the consistency is desireable.

[7]. Redirecting refers to the capability of writing a
program that performs I/O without binding that program to a
particular device. In this case, device binding is done at
process invocation rather than at program compilation -and
such programs are traditionally called "filters" in that
they can be inserted in a "pipeline" of processes in which
the output of one process is the input to another.

[8]. A primary exemplar of a virtual device is a RAM-
-disk. In many systems, there is considerably more RAM
present than the OS is capable of managing, due to limita-
tions of the address bus. While a user can access this
additional RAM in any way he chooses, an easy way to access
it is as a file that just happens to be very fast. This can
be done by writing a device driver. In most systems, a
driver consists simply of a standard set of routines that
implement the standard file functions of open, close, get
byte, and put byte, and the code to both initialize the
device and turn it off.

[9]. For example, process P1 obtains a read loci.- on
records Ra and Rb and decides based on the contents of Rb
that it wants to upgrade its lock on Ra to a write lock (a
write lock is incompatible with any other lock mode).
Concurrently, process P2 obtains a read lock on records Rb
and Ra and decides based on the contents of Ra that it wants
to upgrade its lock on Rb to a write lock. P1 is now
waiting for the read lock on Ra to be released while P2 is
waiting the read lock on Rb to be released and neither
process is able to proceed (PI and P2 do not know of each
others existence, let alone what locks they have).

[10]. The traditional terminology of "cold" and "warn"
starts is misleading for a LAN. With so many processors
involved, a cold or power-off start may only occur once in
the life of the LAN; i.e., when it is first created. From
then on there will always be some complement of servers in
operation and/or some transactions in progress. Subseq'uent
equivalents of cold and warm starts are referred to, in a
LAN, as restarts; i.e., attempts to restore the net to a
current operational status.

i1]. A recoverable resource is one that is guaranteed by
the LAN to survive a failure of any or all of the servers in
the LAN; and is guaranteed to be in a consistent state at
all times in which the LAN is in a consistent state.
Transactions are only meaningful in the context of recover-
able resources.

[12). The use of the term "clock:'" is purely mnemonic. In a
high-speed LAN the use of a real clock on each server is
impossible for at least two reasons: (1) the frequency of
the clock would need to be in nanoseconds; and (2) since
each server has its own clock, there is no way to guarantee
that is in synchrony with the other clocks to the nanosecond
level other than to pass some kind of synchronizing message
around the LAN. And as long as a message needs to be
passed, the message itself can serve as a clock without need
to reference any real clock.

£13). Unless WAL is employed as the logging mechanism,
processes do not necessarily have to be aware that they are
participating in a transaction. However, it is routine to
provide that visibility so that the user can write programs
more efficiently. When a WAL protocol is employed, all
programs must provide code segments for phase 1 and phase 2
processing; a requirement usually enforced by the compiler.

C14]. The manual intervention is critical. An ex-ample
would be an air traffic control system that has responded
affirmatively to a request for permission to land from an
airliner, but due to some hardware malfunction, failed Just

221

one instruction prior to the instruction that would physic-

ally transmit the message. To every process in the system,
and every person observing the system, it would appear that
the message has been sent, even though the system is
repeatedly restarting that transaction. However, unless
someone manually inspects the log, the airliner will run out
of fuel and crash because the only way of k:nowing that the
message going out is not being sent is to see that, on
each restart, the process that physically sends messages
does not acknowledge the vote request meaning it is failing
somewhere between acknowledging the end of phase one
processing and receiving the vote request.

222

A Knowledge Dictionary System for Scheduling Support

P.G. Ossorio and L.S. Schneider

Appendix C

Submitted by
Linguistic Research Institute, Inc.
5600 Arapahoe Avenue
Boulder, Colorado 80303

Submitted to
Rome Air Development Center
Griffiss AFB, New York

Table: ..\..\data\oslan.asc Page: I Strip: I

- OS Parameters / LAN Parameters ---- Server - Participate
I Process [Exists At] [Implements]
la Initiate [Occurs At] [Initiates]
la(l) Spawned [Spawns At] [Spawns]
la(2) Forked [Forks At] [Forks)
la(3) Primed [Primes At] [Primes]
lb Execute [Occurs At]
lb(l) Dedicated
lb(2) Sliced
lb(3) Interrupt
lb(4) Stacked
1c Code Segment [Exists At]
lc(1) Duplicate
lc(2) Single Reentrant
lc(3) Multiple Reentrant
ld Data Segment [Exists At]
Id(1) Process-Bound
ld(2) Code-Bound
2 Memory [Exists At]
2a Real [Part Of]
2a(1) Linear
2a(2) Segmented
2a(3) Paged
2a(4) Protected
2b Virtual [Exists At]
2b(I) Swap
2b(2) Demand Page
2b(3) Explicit
3 Context [Exists AtJ
3a Create
3b Switch
3c Exit
4 Files (Exists At]

4a Data (Exists At)
4a(1) Format (Exists At]
4a(1)a) Stream
4a(1)b) Text
4a(1)c) Paged
4a(1)d) Structured
4a(2) Access [Occurs At]
4a(2)a) Sequential
4a(2)b) Direct
4a(2)c) Indexed
4a(2)d) Indexed Sequential
4a(2)e) Virtual Indexed Sequential
4a(3) Versions [Exists At]
4a(3)a) Snapshots
4a(3)b) Audit Trails
4a(3)c) Differential Files
4b Device [Part Of]

224

Table: ..\..\data\oslan.asc Page: 2 Strip:

OS Parameters / LAN Parameters Server - Participate

4b(3) Definable
4b(4) Raw
4c Caching [Occurs At]
4c(I) Synchronous
4c(2) Read Ahead
4c(3) Write Behind
4d Imaging [Occurs At]
4d(I) User
4d(2) Before
4d(3) After
4d(4) Mirror
4e Update [Occurs At]
4e(1) In Place
4e(2) Replace
4f Locking [Occurs At]
4f(1) Granularity
4f (2) Exclusivity
4f (3) Implicity

4f(4) Deadlock
5 IPC [Occurs At]
5a Files
5b Shared Memory

5c Pipes
5d Sockets
5e Rendezvous

225

Tab 1e:......\data\oslan.asc Page: 1 Strip:

,-Dedicated ------ Partitioned A,-- vailable -,-- Server -

[For --s At]
[Primes At]

226

Table: ..\..\data\.oslan.asc Page: 2 Strip:

~,-Dedicated Partitioned AvaiIable Server .. -

227

Table: ..\..\data\oslan.asc Page: 1 Strip:

,-Coupled - - Function ~ -Transceive -~ -Repeat-_ _

228

Table: ..\..\data\Oslan.asc Page: 2Strip:

Coupled - Function Transceive -r---Repeat

Table: ..\..\data\oslan.asc Page: 1 Strip: 4

Buffer Decode Server ,-- Coupled -

[Exists At]
[Occurs At]
[Spawns At]
[Forks At]

[Primes At]

230

Table: ..\..\data\oslan.asc Page: 2 Strip: 4

,- Buffer Decode Server i - Coupled -

e I

Table: ..\..\data\oslan.asc Page: 1 Strip: 5

,-Interface - -- Port Device Memory

I 2M

Table: .. \. .\data\oslan.asc Page: 2Strip: 5

,-Interf ace ------ Port Device Memory

2 5

Table: ..\..\data\oslan.asc Page: 1 Strip: 6

-- Server Status : Exist . Hierarchy
[Exists At] [Implements] [Implements]
[Occurs At] [Initializes] [Initializes]
[Spawns At] [Spawns] [Spawns) [Incompatible]
[Forks At] [Forks] [Forks] [Compatible]
[Primes At] [NA] [NA] [NA]

234

Table: ..\..\data\oslan.asc Page: 2 Strip: 6

,-Server ~-r - St atu~s -Exist Hierarchy -

I2 5

Table: ..\..\data\oslan.asc Page: 1 Strip: 7

- -Collateral ---- Server x , Status LAN
[Ex:ists At] [Implements]
[Occurs At] [Acquires]

[Compatible] [Spawns At] [Spawns] [OS = LAN]
[Incompatible] [Forks At] [Forks] [Incompatible]
[NA] [Primes At] [Primes] [OS = LAN]

236

Table: ..\..\data\oslal.asc Page: 2 Strip: 7

C o l l a t e r a l - y - - S e r v e r ~ , - - - S t a t u s L A N

237

Table: ..\..\data\oslan.asc Page: 1 Strip: 8

Transaction Service Subservice ,----- Service - - -

I[Implements]
[Initiates]

[Compatible] [Compatible] [OS = Service] [Compatible]
[Nested in Parent] [Incompatible] [Parent = Service] [Compatible)
[Compatible] [Compatible) [OS Service] [Compatible]

238

Table: ..\..\data\oslan.asc Page: 2 Strip: 8

-Transaction -,--- Service. Subservice Service A

239

Table: ..\..\data\oslan.asc Page: I Strip: 9

Confined Migrant Singular Plural

[Compatible] [Remote Spawn] [Compatible] [Compatible]
[Compatible] [Remote Fork] [NA] [Compatible]
[Compatible] [Remote Prime] [NA] [Compatible)

240

Table: .. \. .\data\oslan.asc Page: 2 Strip: 9

Conf ined Migrant - -- Singular Plural

241

Table: ..\..\data\oslan.asc Page: 1 Strip: 10

Distributed ----- Address ---- Broadcast Circuit
I[implements][Has]

[Remote] [Acquires]
(Remote Spawn] [Direct] [Compatible] fECompatible]
[Remote Fork] [Via Parent] [Via Parent] (Via Parent]
IERemote Prime] [Direct] [Compatible] [Compatible]

242

Table: ..\..\data\oslan.asc Page: 2 Strip: 10

1Distributed A,--~ddress '----Broadcast ----- Circuit

243

Table: ..\..\data\oslan.asc Page: 1 Strip: 11

Packet Datagram Message Ticket

[Compatible] [Compatible] [Compatible] [Incompatible]
[Via Parent] [Via Parent] [Incompatible] [Incompatible]
[Compatible] [Compatible] [Compatible] [Compatible)

244

Table: ... \data\oslan.asc Page: 2 Strip: 11

r Packet Datagram Message Ticket

2% 4

Table: ..\..\data\oslan.asc Page: I Strip: 12

Transaction x - Implicity Transaction - Serialization
I[Implements] [Implements] [Sequenced By]
I[InitiatesI [Concurrent] [Initiates] [Sequential]
[Spawns][Enters] [Concurrent Spawn] [Spawns][Enters] [Synchronous]
[Inherits][NestsJ [Concurrent Fork] [Inherits][Nests] [Synchronous]
[Begins][Enters] [Compatible] [Begins][Enters] [Asynchronous]

246

Table: ..\..\data\oslan.asc Page: 2 Strip: 12

.- Transaction ~ -Implicity Transaction serialization

247

Table: ..\..\data\oslan.asc Page: I Strip: 13

Locks , Timestamps ---- Tickets Transaction :"
[Implements]

[Acquires] [Acquires] [Acquires] [Initiates]
[Request Explicit] [Given] [Requests] [Spawns](Enters]
[Inherit All] [Inherits] [Inherits] (Inherits][Nests]
[Request Explicit] (Given] [Requests] [Begins][Enters]

248

Table: ..\..\data\oslan.asc Page: 2 Strip: 13

F - Locks Tinestamps Tickets Transaction

249

Table: ..\..\data\oslan.asc Page: 1 Strip: 14

Logs s Undo Intentions Write-head
[Writes][Examines]

[Entered In]
[Writes To] l[Unspawn] [Spawn Request] [2 Phase Spawn]
[Via Parent] [Unfork] [Fork Request] [2 Phase Fork]
[Writes To] [Compensate] [Activate Request] [2 Phase Activate]

250

Table: ..\..\data\oslan.asc Page: 2 Strip: 14

,-Logs Undo Intentions TWrite-A~head

251

Table: ..\..\data\oslan.asc Page: 1 Strip: 15

Transaction - Coordinate Begin Enter
[Implements] [Obeys] [Requests] j[Requests]
[Initiates] [Request Initiate] [Requests] ([Requests]
[Spawns][Enters] [Request Spawn] [Requests] [Requests]
[Inherits][Nests] [Request Fork] [Incompatible] ([Nests]
[Begins](Enters] [Request Activate] [Requests] ([Requests]

252

Table: ..\..\data\oslal.asc Page: 2 Strip: 15

n-Transaction ~ -Coordinate -T---- B~egin -~----Enter

253

Table: ..\..\data\oslan.asc Page: 1 Strip: 16

-- Nesting Leave Destiny - Transition
[Causes] [Requests] [Votes][Receives] [Undergoes]
[Begins] (Requests] [Has) [Incompatible)
[Begins] [Requests] [Has] [Incompatible]
[Inherits] [Unnests] [Has] [Incompatible]
[Begins] (Requests] [Has) [Incompatible)

254

Table: ..\..\data\oslan.asc Page: 2 Strip: 16

Nesting Leave Destiny Transition

255

Table: ..\..\data\oslan.asc Page: 1 Strip: 17

Commit/Abort -- r-- End Transaction , - Restart -

[Implements] [Implements] [Implements] [Implements]
[Begins] [NA] [Initiates] [Initiates]
[Begins] [NA] [Spawns][Enters] [Respawn]
[Begins] [NA] [Inherits][Nests] [Refork]
[Begins] [NA] [Begins][Enters] [Reactivate]

256

Table: ..\..\data\oslan.asc Page: 2 Strip: 17

Commit/Abort ----- End Transaction *Restart -

257

Table: ..\..\data\oslan.asc Page: I Strip: 18
T ET Record PI/P2 Record --j- Destiny ACK --- Request ACK
[Examines) [Examines] [Examines] [Examines]
[NA] [NA] [NA] [NA]
[NA] [NA] [NA] [NA]
[NA] [NA] [NA] [NA]
[NA] [NA] [NA] [NA)

258

Table: ..\..\data\oslan.asc Page: 2 Strip: 18

ET Record PI/P2 Record - Destiny ACL Request ACK

259

Table: ..\..\data\oslan.asc Page: I Strip: 19

- Request NAK --

(Examines]
INA]
[NA]
[NAJ
[NA]

260

Table: ..\..\data\Oslan.asc Page: 2 Strip: 19

- Request NAK

261

A Knowledge Dictionary System for Scheduling Support

P.G. Ossorio and L.S. Schneider

Appendix D

Submitted by
Linguistic Research Institute, Inc.
5600 Arapahoe Avenue
Boulder, Colorado 80303

Submitted to
Rome Air Development Center
Griffiss AFB, New York

262

TABLE OF CONTENTS

1. Social Practice Description (SPD) Table. 264

4. Element Individual List (EIL) Table. 27

.263-

1. Social Practice Description (SPD) Table.

264

Table: ..\..\data\schspd.asc Page: 1 Strip: I

---- PRO.-PAR.TSTGSS-PT-OS-FTYPE LEMENT-------TIMO DTG--rDTU"TRTPROD"TS-

S0 # .Acquire 481 DT Al 50 1
RI1 01P 48 DI Al 501

1I [HW1] 48 D A 50

1 0 1 <PIanGet.

1 0 1 [RP] 0

1 0 1 [HW1J 0

1 0 2 2 <Get> M
1 0 2 2 RP) m
1 0 2 [HWIJ M
1 0 2 <Verify> 0

1 0 2 [RP] 0

1 0 2 [HWIJ 0
2 0 # <Acquire>

2 0 # [RP]
2 0 # [HW1Item]
2 0 1 <Require> 0

2 0 1 ERP] 0

2 0 2 <Contract for> 0

2 0 2 ERPJ 0
2 0 2 EHWIItem] 0
2 0 3 <Receive> M
2 0 3 [RP) M
2 0 3 [HW1Item] M
2 0 4 <Test> 0

2 0 4 CRPJ 0
2 0 4 [HW1Item) 0

2 0 5 <Accept> M
2 0 5 ERP] M
2 0 5 [HWIItem] M

2 0 6 <Cross off> M
2 0 6 [RP] M
2 0 6 CHWIItem] M
2 0 7 2 <Acquire> R

2 0 7 2 [RP] R
2 0 7 2 [HW1Item] R

3 1 # <Create> 36 M A 5o

3 1 # [RP]
3 1 # COS]
3 2 # <Acquire> 80 D A 50
3 2 # ERP] 80 D A 50

3 2 # COS] 80 D A 50

3 2 1 31 ;Create>

3 21 1 31 [RP] 0
3 2 1 31 [OSReq] 0

3 2 2 32 'Develop 0

3 2 32 [OSLi st 0

3 3 <Select*

3 OS Vendor] M

265

Table: ..\..\data\schspd.asc Page: 2 Strip: 1

---PRO PARTSTG STOPT-OSrFTTYPE ELEMENT M O--DTG--rDTU.:TRFRODTS\
3 21 Purchase> 01

3 2 4 ERPJ 0
4 [VenderOS] 01

3 2 5 <Receive M
2j 51 1 RPJ M

3 VendorOS3 M2 6 <Accept >
3 2 6 [RP] M
3 2 6 [VendorOS] M
3 6 [OS] M
4 0 # <Install> 60 DJ A 504 0 # [RP] 60 Dj A 50

4 0 # [HW2] 60 DI A 50
4 0 # [LocA] 60 DI Al 501
4 0 1 <Emplace>
4 0 1 [RP]
4 0 1 [HW2]
4 0 1 [LocA]
4 0 2 <Assemble>
4 0 2 [RP]
4 0 2 EHW2]
4 0 2 [LocA]
4 0 3 <Activate>
4 0 3 [RP]
4 0 3 [HW2]
4 0 3 [LocA]
4 0 4 <Test>
41 0 4 [RP]
4 0 4 [HW2]
4 0 4 [LocA]
4 0 5 <Accept>
4 0 5 [RP]
4 0 5 [HW23
4 0 5 [LocAl
5 11 # <Create> 36 M A 50
5 1 # [RPI
5 1 # [NetSW]
5 2 # <Acquire> 80 Dj A 50
5 2 # [RP] 80 D A 50
5 2 # [NetSW) 80 D A 50
5 2 51 <Create 0
5 2 51 [RPI 0
5 2 51 [NetSWReq] 0
5 252 < Develop 0
5 52 [RPI 0
5 2 2 52 [NetSWList] 0
5 2 3 <Select> M
5 3 ERP] M
5 2 INetSW Vendor] M

5 <Purchase> 0
5 2 4 ERP] 0

266

Table: ..\..\data\schspd.asc Page: 3 Strip: I

---- PROF ARSTGrSSP PT,--S-,-FTYPE, [ed ELEMENT MO--DTG- DTU TRrROD TS, \

51 21 41 1 1 1 EVendorNetSW) oj01 ~ UT~R ~I
5 2 5 <Receive M
5 2 5 [RP) M

4 2' 5 [VendorNetSW] M

5 2 6 1 <Accept> M
5 2 6 [RP] M
5 2 6 [VendorNetSW] M
5 2 6 [NetSW] M
6 0 # <Acquire> 150 D A 50
6 0 # [RP] 150 D A 50
6 0 #I [AppSW] 150 D A 50
6 0 1 <PlanGet*- 0
6 0 1 [RP) 0
6 0 1 [AppSW] 01
6 0 2 71 <Get> M
6 0 2 7 [RP]
6 0 2 7 [AppSW] M
6 0 3 <Verify> 0
6 0 .3 [RP] 0
61 0 3 [AppSW] 0
7 0 # <Acquire>
7 0 # [RP)
7 0 # [AppSWItem]
7 0 1 <Require> 0
7 0 1 [RP] 0
7 0 1 [AppS ltem] 0
7 0 2 <Contract for> 0
7 0 2 [RP) 0
7 0 2 [AppSWItem] 0
7 0 3 <Receive> M
7 0 3 [RP] M
7 0 3T [AppSWItem] M
7 0 4 <Test> 0
7 0 4 [RP] 0
7 0 4 [AppSWItem] 0
7 0 5 <Accept' M
7 0 5 [RP M
7 0 5 [AppSWItem] M

7 0 6 <Cross off*> M
7 0 6 [RP] M
7 0 6 [AppSWltem] M
7 0 7 7 <Acquire> R
7 0 7 7 [RP] R

7 7 [AppSWItemI R I

8 0 <Install.- 90 D A 50
8 0 # I[RP 90 D A 50
8 0OS[06 90 D A 50
8 0 # [HW13 90 0 A 50
8 0 1 <DoLoad>
81 0 1 2RP67
8 0 I Cos]I

267

Table: .\..\data\schspd.asc Page: 4 Strip: 1

--- R RrT-SSOT-O YE LMN-,-MO---M--DTG-TT TR-P

8 0) 2 1 1 91 <ValTest>
8 0 2 9 ERPI
81 0 2 9 Cos]
B 0 2 1 1 91 EHW1)
8 C) 3 '.Evaluate ,
8 01 ERP)
8~ 01 3 1Val Test)

8 0 4 <Accepti

8 0) 4 [SRP] '
9 0 # <Va1Test>
9 0 # ERPI
91 0 #1 [1OS)
9 C) # [HW11
9 0 # [ListCltem) * UNDEF *
9 C) 111 I <Select".

C)0 I[RP)
9 0 1 [ListCltemJ $ UNDEF*

9 C) 2 <Load.,
9 o 2RP
9 C) 2 [ListCltem] * UNDEF*
91 C) 2 OS)
9 C) 2 EHW1]
9 0 3 1 <Operate"

9 C) 3 RP)
9 0) 3 EListCItemJ UNDEF*
9 0 3 [os]
9 C) 3 HW1)
9 C1 4 <Examine>
9 0 4 ERPI
9 0 4 ElListCltem] *UNDEF*
9 C) 4 C os]
9 0 4 HW1)

9 0 5 <Cross off>~
9 0 5 [RP)
9 0 5 EListCltemj UNDEF *
9 0 6 <ValTest::. R
9 0 6 [RP) R
9 0 6 [ListCltemJ UNDEF * R
9 o 6 EOS) R

10 0 # I<Instal..: R
10 C) #1 JRPI
10) # ENetSWJ
10 C # [HW13
10 1 1) ,,:DoLoad:,;
101 0 1 [RP)
10) 1 [NetSWJ
10 1 i 011 1 1 j EHW13
101 0 2! j <~Val Test:>'-

268

Table: .. \. .\data\schspd.asc Page: 5 Strip: 1

-- PRO-PAR STG SSrOPTyOSqTYPE - -ELEMENT --- OrDTG-yD TUTTRTPROD TIS
ioj of 21 9 ERPJ I I
10 0 21 9 [NetSWJ

10 0) 2 9 E.HW1IJ

101 01 3 1 (Evaluate'.-

10 0 31 1 RP)
10 0 3 EValTestJ
10 0 4 1<Accept
10 01 41 1 1 1 IRPJ
10 Of 4 [NetSWJ
11 0j # (Val Test>

ill 01 #1 ERP)
11 0) #t NetSWJ
11 0 # EHW1)

11 0 ItEListDltem) * UNDEF *
11 0 1 <Select.",

ill 01 1 1 [RP)
11 0 11 1 ListDltem) * UNDEF *

11 0 2 ;,Load>

11 0 2 ERP]
11 C0 21 [ListDltem] * UNDEF *
11 0 2. (NetSW)

11 0 2 1 HW13

11 0 31 (Operate'."

11 10 3 [ListDltem] * UNDEF

111 01 31 1E NetSW]
11 0 3 EHW13
11 0) 4 "':E, xami n e.

11 0 4 EP]
11 0 4 EListDltem) * UNDEF*

11 0 4 ENetSW]

11 0 41 EHW1J
11 0 5 <Cross off.*-

111 0 5 IRP]
11 0 5 I[ListDltem] UNDEF*

11 6 1 ValTest:> R

11 0 6 ERPJ R

11 0 6 [ListDltem] UNDEF R
11 0 6 [NetSWJ R

11 U 6 CHW1J R

311 0 # (Add to'>'
311 # * RP)
-,l 0 #t COSReq Item]

31 0 1 'Select,
31 0 1 EP
31 0 COSNeed]

31 01 1 [ListN3
1 2 "Analyze ,
31 0 2 ERPJ

31 0 OSNeed-
31 0 3 <Cross off'.-

26 9

Table: .. \. .\data\schspd.asc Page: 6 Strip: 1

--POT- 1RSTGSS -OTS--,-FTYPE LEMENT- 1 4--T107lDTDTG TU TRrPROD-rTSy

31 0 31 [OSNeed)
31j 0 3 J ListN]
3.1 0 4 31A(dd to> R

31 0 4 3.1 £ERP] R
31i 0 4 31 (OSReqItem) R
321 0 # I -Add to>
321 01 # I IRP]
32 0 # [OSListltem)
-72J0 1 \Select)"

31, 0 1 [RP3
3-2 0 1 [VendorGS)
32 0 1 [ListP]
321 0 2 1 331 .Compare>
32 0 2 33 RP)
32 C) 2 33 OSReq)

32 0 21 331 (VendorOS)
32 <) 3 Cross off>

32 0 3 ERP)
32 0 [VendorOS)
324 0 3 j ListP)

32 0 4 <Add to>"
32 0 4 ERPJ R

321 0 4 (VendorOS) R
32 0 4 tOSListItem) R

33 0 # <Compare:?.
77.. 0 # ERP)
33 # tOSReqItem]

33 0 * EVendorOS]
33Z C) 1 <Select>

33 0 1 £RP)

33l 011)1 1 (OSReqItem)
:3 0 2Cross off*,
33 2 LRP)

21 ('OSReqltem)
33 0 <3Compare* R
:3 3 3 RF] R
33 3 tSReqItem) R

0 3 3 VendorOS) R
50) 0) # <Create: 0) D A LC-I
50 01 # I RP) 0 D A LC-I
50 0 # EDHS) 0 D A LC-I
50) 1 < ,Acquire'.. 48 D A LC-I
501 0 11j ERP) 48 D A LC-I

C) 1 1 ifHW1J 48 ID A LC-I
50j 0 2 I 'Install. 1 60j D A LC-I
50 0o 4 ERP) 60 D A LC-I
50 0 2 4 1HWI) 60 D A LC-I
50 0 2 4 E[Loc~l 60 D A LC-I
50 01 3 A 81 I<Install> 901 DI AILC-11l
50) 0 3 A 8 ERPI j 90 Df A LC-I

270

Table: ..\..\data\schspd.asc Page: 7 Strip: 1

---- ROTARTSTGSSTPT-OS--TYPE LEMENT 1OT-DTG-D TUTR TPRODTTS \

501 0 3 A 8 [HS2 90 D A LC-I I50 0l 3 AI a o 9° D A LC-II

50 0 3 B 10 <Install. 15o D A LC-I
50 0 3 B 10 CRPJ 150 D A LC-I

50 0 3 B 10 [HW2] 150 D A LC-I

50 0 3 B 10 ENetSW] 150 D A LC-I

50 0 4 1 I I <Install' LC-I
50 0 4 1 [RP] 210 D A LC-I

50 0 4 [HW2] 2101 D LC-I50 0 4 [AppSW] 210 D LC-I
50 0 5 1<Install> I 270 D A ILC-I 1
50 0 5 [RP] 270 D A LC-I 1

50 0 5 [DHS] 270 D A LC-I

50 0 5 [ListK] * UNDEF 27() D A LC-I
50 0 A I <Certifies 300I D A LC-I
50 0 6 A [RPC] 300i D A LC-
50 0 6 A [DHS] 30o 0 D LC-I

50 0 6 B Accepts> 3)5 D A LC-I

50 0 6 B [UserRP] 3051 D A LC-I

50 0 6 B [DHS) 305 D A LC-I

50 C) A 3 'Acquire> 80 D A LC-I

50 01 A 3 ERP) 80 D A LC-I

50 01 A 31 OS] BC D A LC-I

50 0 BI 5 <Acquire> 110 D A LC-I

50 0 B! 5 ERP) 1101 D A LC-I
50 0 ; B 5 [NetSW] 110 D AILC-I

50 C) C 6 <Acquire> 150 D A LC-I

50 0 C 6 ERP] 150 D A LC- I1

50 o 0 Ci 6 [AppSW] 150 D AILC-I

51 C #Add to> i
51 0 # ERP) I
51 C) # [NewSWReqItem]
51 C-) I Select
51 C 1 [RP]

511 0 [NewSWNeed]
51 0 1 [ListN]
51 0 . "Analyze>
51 0 2 [RPJ
51 01 2 <'NewSWNeed >
51 0;3 'Cross off

51 C1 3 1[RP]
51 C) [NewSWNeed]

51 C) j [ListN]

51i 0 1 41 1 51 1 I:Add to*: P
51 01 41 51 RP] RI

51 () 1 51 ENewSWReqItem] I RI
52 0 #I I ,Add to::

52 0 # ERP]
52 C # [NewSWLi st Item]
5 2 1 Se I ecf :2 0 I[RP

271

Table: ..\..\data\schspd.asc Page: 8 Strip: 1

-- POrA-SGrSrP--C-rTPLMN 0, T- T TR-vIPROD TSTA
521 01 11 1 1 CVendorNewSW] I I
521 0 11 EListP1
52 0 2 5Z3 ,Compare"'.-
52 Ci 2 53 ERP]
524 C) 25(1 NwS~q

52) C,5-[enNewSWI
52 0 3 '<Cross off"
521 0 37 1ERP]
52 0 .3 VendorNewSW]
52 o) 7 (ListP3
521 0 4 1 I<odd to>.
52) 0 4 ERP] R
52 0 4 j VendorNewSWJ R

52 01 41 1 E1NewSWListItem]
53 0 # ":Compare
53 0 # CRP)

531 01 #1 1 NewSWReqItemJ

5-3 o~ # [VendorNewSW)
53; 0II 1 <KSelect
5-3 C1) 1 1 [ERPJ
53 C) 1 [NewSWReqltem]
53 .1 Cross of f
5'3 0 2 ERP]

53j C) 2 NewSWReq Itern)
53 3 --'Compare.' RI1

53: o 3- EIRP) II
53 0 53 NewSWReqItemJ

5 o 53 EVendorNewSW3 RI

272

2. Element IndividUal List (EIL) Table.

Tabl1e: ... \data.scheil .asc Page: 1 Stri p: 1

Ri 0 -- A RTG LMETii IV I DUA~L-
1li I~ I~ [Parml I [RPFIBM)I
1 1 (.)i # I IRPP ar m II IBM
11 CA # [HW11 I[List~l
I c # 1 N[ListAJ i[Frocessorl

i) #1 1 11 I[ListR) i[Console]
11 #-) 1 j 11 [List~l I[Network Hardware]

1#C 11 A,[ListAJ L[E>,.tended Memory Interface]
ii ;:I # 11 AjEList) J[Peripheral Interface]
11 01 # I1i Ai[ListA3 If[Mass Storage]
1 C)1 # 1 [List~) j[Peripherals]
11 (-) # 11 B [Processor) [CPU]
11 cj # 1 B [Processor) [FPU]
1 Dj#j 1 B [Processor) [Memory Bus)
1I 01 # 11 CI[Console) [Monitor)
11 #I 1 C [Console) [Video Interface)
1' 1 #f 11 Cj[Consola) [k--eyboard]
i #1 11 C [Console) [Mouse)I

11 0 # 1 D [Network Hardware] [Network Backplane]
I #1 1 D [Network Hardware) [INetwork Interfarce Board)

01 #1 1 D [Network Hardware) [Gateway Board]
Kif # if E I[Mass Storage) [Mass Etoraae Interface]

1! 4i i I 1Ej[Mass Storage) I Mas c"S t ora qe Le 1 c esa
1 ::)1 #1 11 F [Peripherals) I[Printer)
1 f #1 1f F [Peripherals) V[Tape Drive]
(:) #1f CRP~arml) f[RPIEMJ

ERPParml) JIBM

2f O # 1 EList~l ~[Processor]
2) # I Ls~

(d # 1 1 I[Lit~l Console]
0I A [A .st~l INetwork-- Hardware)
#~ I A 1 j[List~l l[Extended Memory Interface]

01 #1 1 A [List~l [Peripheral interfacei
2 4 1 A [List~) [Mass Storage)
2 1 #1 1 1 A EListAJ ICPeripherals)

21 (1I #1 1 [CPU] INational j.032
"1 #1 I [CPU] Motorola 68(30

#D f CPU) lIntel 80387
2! u # j[FPUJ M1otorola 68881

Q1 C # EFPU) ;rs3torol a 68882
Q1 # [FPU] Intel908

2 C) #1 [FPU) Intel 80D287
2 f1 #[Memory Bus) Unibus
2 (1 Memory BUS) iVersabUS

#1 1f [Memory BUS] Mi croChannel
'I [P Ceripheral Interface) I[RS-23 2J

-' 0 #1 1 [Feripheral Interface) [IIEEE-48e)
- I [Peripheril Interface) [CentronicsJ
2 # [Monitor) [Monochrome Monitor)
0 [Monitor) I[Color Composite Monitor)

0I #1 I [Monitor) [R'CB Monitor)
2, [Monitor) [X1 Monitor)

274

Table: ..\..\data\scheil.asc Page: 2 Strip: 1

---PRO-TPARr-STG-rSSOPTrS ELEMENT INDIVIDUAL-
0 #1 1 [Monitor) [HiRes Monitor]
0 # I [Video Interface] [MDA Interface]

2 0 # [Video Interface] [CGA Interface]
2 0 # [Video Interface] [EGA Interface]

21 0 # 1 [Video Interface) [VGA Interface]
2 0 # [Keyboard] EXT Type Keyboard]
2 0 # [Keyboard] [AT Type Keyboard]
2 0 [Keyboard] [Mouse]
2 0 # [Mass Storage Interface] [SCSI]
2 C 0 #[Mass Storage Interface) I WDI]
21 0 [Mass Storage Devices] [Fixed Hard Disk]
2 0 # [Mass Storage Devices] [Disk Cartridge]
2 0 # [Mass Storage Devices] [CD-ROM]

2 0 # [Mass Storage Devices] [CD-WORM]
2 0 # [Printer] [NLQ Printer]
2 0 # [Printer] (High Speed Printer]

0 #1 [Printer] [Laser Printer]
1 0 # [Tape Drive] [Start/Stop Tape Drive]
2 0 # [Tape Drive] [Streamer Tape Drive]
2 o # [Network Interface Board] G-Net Board
2 0 # [Network Interface Board] Omninet Board
2 0 # [Network Interface Board] Arcnet Board
2 0 (Network Interface Board] 3COM Board
2 0 [(Network Interface Board] Plan 2000 Board
2 0 # [Network Backplane] [Optical Bus Backplane]

C) # 1 [Network Backplane] [Optical Ring Backplane]
0 # [Network Backplane] [Optical Star Backplane)

21 0 # [Network Backplane) [Optical Cluster Backplane]
21 0 # (Network Backplane] [Coaxial Bus Backplane]
2 0 # [Network Backplane] [Coaxial Ring Backplane]
2 0 # [Network Backplane] [Coaxial Star Backplane)
2 0 # 1 [Network Backplane) [Coaxial Cluster Backplane]

2 # [Network Backplane] [Twisted Pair Bus Backplane)
0I # [Network Backplane] [Twisted Pair Ring Backplane]

2 0 # [Network Backplane] l(Twisted Pair Star Backplane]
2 0 [(Network Backplane] [Twisted Pair Cluster Backplane]
2 0 # [Network Backplane] (VHF Bus Backplane]

C) # [Network Backplane] (UHF Bus Backplane)
0 # [Gateway Board] [X.25 Gateway Board]

2 0 [(Gateway Board] (SNA Gateway Board]
2 0 # [Gateway Board) [SDLC Gateway Board]

C) # COS] Unix System V
3 0 # [OS] Xenix 387

11) #1 1 COS] ONX
0 # [OS] IRMX 87

3 # [OS] EUCSD p]

0 #1 OS) Concurrent
)0 C [OS] VM/PC

- C) # COS] CX/PC
0 1 # [OS) MSDOS 5.:
) I # [NetSW] Netware

275

Table: ..\..\data\scheil.asc Paqe: Strip: i

-- PROPAR-,-STGSS-,TPT-,-S, ELEMENT INDIVIDUAL--
- I [NetSW] G-apevine

41 1i [NetSW] Locus
3 l#I[NetSW] 3 PlUs
S0[NetSW] Omninet

1 #1 1 [NetSW] IPC-Net
Q 1) # [NetSW] Multilink
0 # [NetSW] Tiara Link

- OI # [NetSW] Tapestry
3 0 # [NetSW] ARCnet
4 0 # [HW2] [ListR]
41 01 # 1 RI[ListR] l[Processor]
41 0 # 1 R [ListR] [Console]
4 0 # 1 R [ListR] [Network Hardware]
41 0 # 1 1 [ListR] [Extended Memory Interface]
4 0 # 1 R [ListR] [Peripheral Interface]
4 0 # 1 R [ListR] [Mass Storage]
4 0 # 1 R [ListR] [Peripherals]
5 0 # I NS [NetSWReqs] [Bandwidth Req]
5 0 # 1 NS [NetSWReqs] [MT Failures Req]
5 0 # 1 NS [NetSWReqs] [MT Recovery Req]
5 0 # 1 NS [NetSWReqs] [Failure Mode Req]
5 0 # I NS [NetSWReqs] [Compatibilities Req]
5 0 # 1 NS [NetSWReqs] [Services Req]
5 0 # 1 [Bandwidth Req] etc
6 0 # [AppSW] [ListB]
6 C # 1 B [ListB] [Text Editor]
6 C # 1 B [ListB] [Word Processor]
6 0 # 11 B [ListB] [File Manage SW]
6 0 #1 1 BI[ListB] [Spreadsheet SW]
6 0 # I B [ListB] [Integrated SW]
6 0 # 1 B [ListB] [Compilers]
S01 # 1 [Compilers] [Pascal Compiler]
6 01 #1 I [Compilers] [Ada Compiler]
S() #1 1 [Compilers] [C Compiler]
6 0f # 1 [Compilers] I[Prolog Compiler]
6 0 # [Compilers] [Basic Compiler]

0 [Text Editor] Vedit
C # [Text Editor] [Vi]

7 C # [Text Editor] TT
7 0 # [Text Editor] [SPF]
7 0 # [Word Process SW] Wordstar
7 0 # [Word Process SW] Word Perfect
7 0 # [Word Process SW] lWord

71 0 #1 [File Manage SW] ProFile
7 (' # [File Manage SW] Hyper Card
7 1 # 1[File Manage SW] TT

C) # [Database Manage SW] F'arado
7 0 # [Database Manage SW] MDBS
7 C) # [Database Manage SW] Pillar

7 01 #1 I[Database Manaqe SW] TT
0 # [Spreadsheet SW] SuperCalc

276

Table: .. \..kdata\scheil.asc Page: 4 Strip: 1

----PROj-PAR-STGTSSTOPTOS EL EMENT -INDIVIDIAL-
iCSpreadsheet SW] MultiP1an

71 0 # [Spreadsheet SW] TK'Solver
7 0 # [Spreadsheet SW] Lotus 1-2-
7 0 # [Integrated SW] Symphony
7 0 # [Integrated SW] Framework II
7 0 # [Pascal Compiler] Borland Pascal Compiler
7 0 # [Pascal Compiler] Microsoft Pascal Compiler
71 0 #1 [Pascal Compiler] [UCSD Pascal Compilerr

0 # [Ada Compiler] Alsys Ada Compiler
7 0 # [Ada Compiler] jJanus Ada Compiler
7/ 0 #1 [C Compiler] Borland C Compiler
7 0 # [C Compiler] Lattice C Compiler
7 0 # [C Compiler] Microsoft C Compiler
7 0 # I[Prolog Compiler] Arity Prolog Compiler
7 0 # [Prolog Compiler] Borland Prolog Compiler
7 01 # [Basic Compiler] Borland Basic Compiler
7 01 #1 Ij[Basic Compiler] JTrue Basic Compiler

277

A Knowledae Dictionary System for Scheduling Support

P.G. Ossorio and L.S. Schneider

Appendix E

Submitted by
Linguistic Research Institute, Inc.
5600 Arapahoe Avenue
Boulder, Colorado 80303

Submitted to
Rome Air De/elopment Center
Griffiss AFB, New York

2-78

TABLE OF CONTENTS

i. Fact Type Table...................... 8

2. Fact Table.......................

279

1. Fact Type Table

----F-TYPEr DESCRIPTION 1
lI EProcess] <Started' [On Time]
[Process] S,-tarted:- [Late]

3 [Process] <Started'" [Not Yet]
4 [Process] <Proceeding: [Per Schedule]
5 [Process] <Proceeding". [Behind Schedule)
6 [Process] <Estimate" [Completion]
7 [Process] (Estimate> [Start]
8 [Process) <Completed.".
9 [Process] <Started'> [Just Now]

10 [Process) <Completed> [Just Now]
111[Process) (Started> [Early)
12 [process) <Completed> [Late]
13 [Process) ;"Completed> [Early]
141(Process] <Delayed By'. [Process)
15 [Process) <Delayed By> [Object)
211 [RP) <Create- [Requirements) [OS)
22 [ERP) <Create>- [Requirements) [NetSW)
23 [RP) <Create> [Requirements) [AppSW)
2 4 [RP) <.Create>~ [DHS Node) [Loc)
3 [CRP) <~Assemble>? [HW2] [Loc)
41 [RP) <Contract*. [Purchase) [OS) [VenderOS)
51 [RP) "'Receive>' [OS) [VenderOS)
611[RPM) <Accept; [OS)
71 [RP) <Slct NetSW)
61 [RPJ CD~a. NetSWJ COS) [HW2)
911[RP) <ValTest) [NetSW] COS] [HW23

101 [RP) .Verify.I [AppSW]
111 [RPM) <Certify> LDHS)
1121 [DHSJ .".Uncertified By> [Constituent]
1211 [RPUser] '.Accept'.' [DHS)

2. Fact Table Page: 1 Strip:

-- ID. TYPE ELEMENT DATE T

1F 11(50) <Started> (On Time] 8907o17
2 4!(01) 'Proceeding" [Per Schedule] 890401
4 [01.0.2] <'Proceeding> [Per Schedule] 89 0328
5 8 [01) -Completed> 890415
6 21 [RPTRW] 'Create> [Requirements] COS] 890401
7 31 [IBM] <Assemble* [DHS Hardware] [Omaha] 890425
8 4 [04) :Proceeding, [Per Schedule]

9 10(04] <Completed> [Just Now] 890430
10 41 [TRW] <Contract> [Purchase] [Unix][ISC] 890415
11 51 [TRW] <Receive [Unix] (ISC] 890510
12 51 [TRW) <Receive: [Unix] [Bell] 8905101
13 22[DEC[Create' (Requirements] [NetSW]
14 61 (RPOmaha] -Accept"- [Unix] 890506
15 71 [RPDEC <'Select*> [DECNET] 890605
16 81 [DEC] 'DoLoad' [DECNET) [Unix] [DHS] 890701
17 91 [DEC] <ValTest> [DECNET] [Unix] [DHS] 890720

18 4 [10] <Proceeding> [Per Schedule) 890720
19 6 (10] <Estimate'> [Completion] 890901
20 6 (51..5] <Estimate [Completion] 890915
21 6 (10) <Estimate' [Completion] 890915
22 E ob] ,Estimate> [Completion] 890901
23 101 [P. J. Aucoin] 'Verify: [AppSW] 890901
24 6([51..5] <Estimate> [Completion] 891215
25 6 C51..5] <Estimate> [Completion] 891201
26 1(C51..5) <Completed> [Just Now] 891011
27 141[51] <Delayed By' [User Interface] 891101

10 (513 <Completed' [Just Now]
6 (50. .2] <Estimate [Completion] 900101

30 14 [50..23 <Delayed By> [] 900101

31 8 [50..2) <Completed> 900115
32 112 [DHS] <Uncertified By" [User Interface] 900115

1 11[RPM) <Certify> (DHS User Interface] 900130

314 121 [RPUser] <Accept> [DHS] 900130

281

Page: I Strip: 2

SOURCE RDATE---.R EXPLANATION
RPIBM 890310 3!Contract F30602-C-89-117
RPIBM 890404 3
RPIBM 890406 3
H. R. Robinson 890420 3
M. J. O'Brien 890420 2
H. R. Robinson 890425 3
K. H. Martinez 890425
H. R. Robinson 890430 3
M. J. O'Brien 890430 2
M. J. O'Brien 890430 2 Per Purchase Contract
M. J. O'Brien 890515 2
K. C. Jones 890601 3
M. J. O'Brien 890610 2 OS Installation Complete
K. C. Jones 890615 3
K. C. Jones 890705 3
K. C. Jones 890725 3
K. C. Jones 890725 31
K. C. Jones 890801 3 Compatibility Problem
M. J. O'Brien 890805 2 Compatibility Problem
K. C. Jones 890815 3 Compatibility Problem
M. J. O'Brien 890815 2
M. J. O'Brien 890901 2
M. J. O'Brien 890901 2 Delay in Acquiring SW
M. J. O'Brien 890915 2 Revised Completion Estimate
M. J. O'Brien 891105 2
M. J. O'Brien 891105 2
M. J. O'Brien 891110 2
M. J. O'Brien 891201 2 Delay in First Installation
M. J. O'Brien 900101 Delay in First Installation
M. J. O'Brien 900115 Delay in First Installation
TRW 900201 2
TRW 900210 2 User Interface Certified
TRW 900210 21

282

Page: 1 Strip: 3

r PPSOT-RFACT RSCHED .\

50.. 0 day delay
50.. 19 45 day delay
50..3 19 45 day delay

30 day delay
06.. 3

151 23 45 day delay
24 30 day delay
25 30 day delay

30 day delay plus x
40 day delay

28 30 day delay
30 day delay plus x

28 45 day delay
15 day delay plus x

32130 day delay
30 day delay

283

I

MISSION

Of
Rome Air Development Center

RADC plans and executes research, development, test and
selected acquisition programs in support of Command-7, Control,

Communications and Intelligence (C,1) activities. Technical and

engineering support within areas of competence is provided to

ESD Program Offices (POs) and other ESD elements to
perform effective acquisition of C31 systems. Thc areas of

technical competence include communications, comnmand and

control, battle management information processing, surveillance
sensors, intelligence data collection and handling, solid state

sciences, elect romagnetics, and propagation, and electronic
reliability/maintainability and compatibitity.

